首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ICLR 2022 | 减少跨语言表示差异,字节跳动AI Lab通过流形混合增强跨语言迁移

机器之心发布 字节跳动人工智能实验室、加利福尼亚大学圣塔芭芭拉分校 字节跳动人工智能实验室和加利福尼亚大学圣塔芭芭拉分校的研究者提出了跨语言流形混合(X-Mixup)方法为目标语言提供 “折衷” 的表示,让模型自适应地校准表示差异。此方法不仅显著地减少了跨语言表示差异,同时有效地提升了跨语言迁移的效果。 基于多语言预训练语言模型(比如 mBert、XLM-R 等),各种跨语言迁移学习方法取得了不错的迁移效果,但其中许多目标语言的性能仍然远远落后于源语言。字节跳动人工智能实验室和加利福尼亚大学圣塔芭芭拉分校通

01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【NLP必备】将模型应用到数据较少的语言上:跨语种词嵌入模型梳理

    【新智元导读】不同语言的数据量不同。一些数据较少的语言,嵌入模型的训练会遇到困难,而跨语言嵌入模型则允许研究者将来自不同语言的词汇投影到共享嵌入空间中,使我们能够把在拥有大量数据的语言上训练而成的模型——比如英语——应用到数据较少的语言上。今天为大家推荐的这篇论文,对跨语言嵌入模型进行了梳理。我们摘取论文的概要和评估部分为您做了介绍。 跨语言嵌入模型允许我们将来自不同语言的词汇投影到共享嵌入空间中。这使我们能够把在拥有大量数据的语言上训练而成的模型——比如英语——应用到数据较少的语言上。本文对跨语言嵌入模型

    09

    《跨语言大模型》最新综述

    跨语言大模型(MLLMs)能够利用强大的大型语言模型处理和回应多种语言的查询,在多语言自然语言处理任务中取得了显著的成功。尽管取得了这些突破,但仍然缺乏一份全面的调查总结该领域现有方法和最新发展。因此,在本文中,我们进行了深入的综述,并提供了一个统一的视角,总结了多语言大型语言模型领域的最新进展和新兴趋势。本文的贡献可以总结如下:(1)首次综述:据我们所知,我们首次按照多语言对齐的方式对MLLMs研究领域进行了深入综述;(2)新分类法:我们提供了一个新的统一视角,总结了MLLMs的当前进展;(3)前沿与挑战:我们重点介绍了几个新兴领域并讨论了相应的挑战;(4)丰富资源:我们收集了丰富的开源资源,包括相关论文、数据语料库和排行榜。我们希望我们的工作能够推动MLLMs领域的突破性研究。

    01
    领券