看了大多数博客关于泊松分布的理解,都是简单的对公式做一些总结,本篇文章重点关注泊松分布如何被提出,以及理解背后对现实的假设是什么。可以参考参考的资料有 1. 百度百科–泊松分布(推导过程值得研究) 2. wiki pedia –poisson distrubtion(讲的够详细) 3. 一篇大神博文–泊松分布和指数分布:10分钟教程(至少阐述明白了泊松分布用来干嘛)
又叫做0-1分布,指一次随机试验,结果只有两种。也就是一个随机变量的取值只有0和1。 记为: 0-1分布 或B(1,p),其中 p 表示一次伯努利实验中结果为正或为1的概率。
伯努利分布(Bernoulli distribution)又名 两点分布 或 0-1分布,在讲伯努利分布前首先需要介绍伯努利试验(Bernoulli Trial)
在平时的科研中,我们经常使用统计概率的相关知识来帮助我们进行城市研究。因此,掌握一定的统计概率相关知识非常有必要。
原文转自:http://hi.baidu.com/leifenglian/item/636198016851cee7f55ba652
在上一篇描述性统计中提到数据分析的对象主要是结构化化数据,而所有的结构化数据可以从三个维度进行描述,即数据的集中趋势描述,数据的离散程度描述和数据的分布形态描述,并对前两个维度进行了介绍。
在统计学中,最大似然估计(maximum likelihood estimation,MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法。最大似然估计在统计学和机器学习中具有重要的价值,常用于根据观测数据推断最可能的模型参数值。这篇文章将详细介绍最大似然估计。
在这里,我们将帮助客户将 PyMC3 用于两个贝叶斯推理案例研究:抛硬币和保险索赔发生。
在这里,我们将帮助客户将 PyMC3 用于两个贝叶斯推理案例研究:抛硬币和保险索赔发生(点击文末“阅读原文”获取完整代码数据)。
项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star,留言,一起学习进步
什么是贝叶斯模型?(事件θ和y同时发生的概率=θ发生的概率*在θ发生的情况下y发生的概率=y发生的概率*在y发生的情况下θ发生的概率)
伯努利分布(两点分布/0-1分布):伯努利试验指的是只有两种可能结果的单次随机试验。如果对伯努利试验独立重复n次则为n重伯努利试验。
期望最大化(EM)算法被广泛用于估计不同统计模型的参数。它是一种迭代算法,可以将一个困难的优化问题分解为几个简单的优化问题。在本文中将通过几个简单的示例解释它是如何工作的。
在统计学中为了观察数据的离散程度,我们需要用到标准差,方差等计算。我们现在拥有以下两组数据,代表着两组同学们的成绩,现在我们要研究哪一组同学的成绩更稳定一些。方差是中学就学过的知识,可能有的同学忘记了 ,一起来回顾下。 A组 = [50,60,40,30,70,50] B组 = [40,30,40,40,100] 为了便于理解,我们可以先使用平均数来看,它们的平均数都是50,无法比较出他们的离散程度的差异。针对这样的情况,我们可以先把分数减去平均分进行平方运算后,再取平均值。
“获胜概率”的实时计算(或估计)很困难。我们经常在足球比赛中,在选举中看到这种情况。
概率和统计知识是数据科学和机器学习的核心; 我们需要统计和概率知识来有效地收集、审查、分析数据。
已有 27345 次阅读 2017-7-31 09:15 |个人分类:系列科普|系统分类:科普集锦
介绍 假设你是一所大学的老师。在对一周的作业进行了检查之后,你给所有的学生打了分数。你把这些打了分数的论文交给大学的数据录入人员,并告诉他创建一个包含所有学生成绩的电子表格。但这个人却只存储了成绩,而
来源:DeepHub IMBA本文约3400字,建议阅读5分钟本文中通过几个简单的示例解释期望最大化算法是如何工作的。 期望最大化(EM)算法被广泛用于估计不同统计模型的参数。它是一种迭代算法,可以将一个困难的优化问题分解为几个简单的优化问题。在本文中将通过几个简单的示例解释它是如何工作的。 这个算法最流行的例子(互联网上讨论最多的)可能来自这篇论文 (http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html)。这是一个非常简单的例子,所以我们也从
来源:Deephub Imba本文约2800字,建议阅读8分钟本文我们将介绍一些常见的分布并通过Python 代码进行可视化以直观地显示它们。 概率和统计知识是数据科学和机器学习的核心;我们需要统计和概率知识来有效地收集、审查、分析数据。 现实世界中有几个现象实例被认为是统计性质的(即天气数据、销售数据、财务数据等)。这意味着在某些情况下,我们已经能够开发出方法来帮助我们通过可以描述数据特征的数学函数来模拟自然。 “概率分布是一个数学函数,它给出了实验中不同可能结果的发生概率。” 了解数据的分布有助于更好
概率和统计知识是数据科学和机器学习的核心;我们需要统计和概率知识来有效地收集、审查、分析数据。
摘要:概率分布在许多领域都很常见,包括保险、物理、工程、计算机科学甚至社会科学,如心理学和医学。它易于应用,并应用很广泛。本文重点介绍了日常生活中经常能遇到的六个重要分布,并解释了它们的应用。 介绍 假设你是一所大学的老师。在对一周的作业进行了检查之后,你给所有的学生打了分数。你把这些打了分数的论文交给大学的数据录入人员,并告诉他创建一个包含所有学生成绩的电子表格。但这个人却只存储了成绩,而没有包含对应的学生。 他又犯了另一个错误,在匆忙中跳过了几项,但我们却不知道丢了谁的成绩。我们来看看如何来解决这个问题
在这篇文章中,我将解释有监督的机器学习技术如何相互关联,将简单模型嵌套到更复杂的模型中,这些模型本身嵌入到更复杂的算法中。接下来的内容将不仅仅是一份模型备用表,也不仅仅是一份监督方法的年表,它将用文字、方程和图表来解释主要机器学习技术家族之间的关系,以及它们在偏差-方差权衡难题中的相对位置。
无论是在理论还是实际的实验当中,一个事件都有可能有若干个结果。每一个结果可能出现也可能不出现,对于每个事件而言出现的可能性就是概率。而分布,就是衡量一个概率有多大。
我们使用广义线性模型(Generalized Linear Models,简称GLM)来研究客户的非正态数据,并探索非线性关系(点击文末“阅读原文”获取完整代码数据)。
贝叶斯统计在机器学习中占有一个什么样的地位,它的原理以及实现过程又是如何的?本文对相关概念以及原理进行了介绍。 引言:在很多分析学者看来,贝叶斯统计仍然是难以理解的。受机器学习这股热潮的影响,我们中很多人都对统计学失去了信心。我们的关注焦点已经缩小到只探索机器学习了,难道不是吗? 机器学习难道真的是解决真实问题的唯一方法?在很多情况下,它并不能帮助我们解决问题,即便在这些问题中存在着大量数据。从最起码来说,你应该要懂得一定的统计学知识。这将让你能够着手复杂的数据分析问题,不管数据的大小。 在18世界70年代
最近几日一直在研究统计学的各种分布,看的云里雾里。这次主要总结几个问题,第一,Beta分布的前生今世,它是用来干嘛?第二,Beta分布和二项式分布有什么关系。这期间参考的资料有很多:
隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA)是由 David M. Blei、Andrew Y. Ng、Michael I. Jordan 在2003年提出的,是一种词袋模型,它认为文档是一组词构成的集合,词与词之间是无序的。一篇文档可以包含多个主题,文档中的每个词都是由某个主题生成的,LDA给出文档属于每个主题的概率分布,同时给出每个主题上词的概率分布。LDA是一种无监督学习,在文本主题识别、文本分类、文本相似度计算和文章相似推荐等方面都有应用。
在某些分布假设下,某些机器学习模型被设计为最佳工作。因此,了解我们正在使用哪个发行版可以帮助我们确定最适合使用哪些模型。
在特征工程讲座结束时(第 14 讲),我们提出了调整模型复杂度的问题。我们发现一个过于复杂的模型会导致过拟合,而一个过于简单的模型会导致欠拟合。这带来了一个自然的问题:我们如何控制模型复杂度以避免欠拟合和过拟合?
贝叶斯统计这个术语最近被广泛使用。它常用于社交场合、游戏和日常生活中,如棒球、扑克、天气预报、总统选举投票等。
今天我们来聊聊几种特殊的概率分布。这个知识目前来看,还没有人令我满意的答案,因为其他人多数是在举数学推导公式。
【导语】正值求职、跳槽季,无论你是换工作还是找实习,没有真本事都是万万不行的,可是如何高效率复习呢?之前我们给大家推荐了一份 Python 面试宝典,收藏了近 300 道面试题,今天为为家精心准备了一份 AI相关岗位的面试题,帮大家扫清知识盲点,自信上场!
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
上一小节对随机变量做了一个概述,这一节主要记录一维离散型随机变量以及关于它们的一些性质。对于概率论与数理统计方面的计算及可视化,主要的Python包有scipy, numpy和matplotlib等。
(此文想给袁贤讯老师“再谈贝叶斯——从个体和群体的概率更新角度”一文中提到的beta分布及贝叶斯分析等,补充一点简单解释。)
总第109篇 前言 在开始学习具体的贝叶斯参数前,你可以先看看:朴素贝叶斯详解 朴素贝叶斯一共有三种方法,分别是高斯朴素贝叶斯、多项式分布贝叶斯、伯努利朴素贝叶斯,在介绍不同方法的具体参数前,我们先看看这三种方法有什么区别。 这三种分类方法其实就是对应三种不同的数据分布类型。 高斯分布又叫正太分布,我们把一个随机变量X服从数学期望为μ、方差为σ^2的数据分布称为正太分布,当数学期望μ=0,方差σ=1时称为标准正态分布。 正太分布概率图 伯努利分布又称“零一分布”、“两点分布”(即结果要么是0要么是1),是二
http://www.tensorinfinity.com/paper_162.html
前天推了一篇关于EM算法的文章,后台有留言反映不太明白,包括解释EM使用的抛硬币的例子。
假设有一枚硬币,我们想确定这枚硬币是否质地均匀。即想知道抛这枚硬币,正反面出现的概率各是多少?于是我们将这枚硬币抛了10次,得到的数据x0是:反正正正正反正正正反。我们想求的正面概率θ是模型参数,而抛硬币模型可以假设服从二项分布。
敲黑板,干货已到达战场!!!在数据分析中,二项分布、泊松分布是我们经常用到的两个分布,今天小编将会先简单介绍二项分布基础:伯努利试验、n重伯努利试验以及两点分布,接着咱们讲解二项分布和泊松分布的概念,完事之后,咱们讲解一下二项分布转换泊松分布求解的条件,最后通过python来看一下,为什么二项分布在某种条件下可以转换成泊松分布近似求解。
作者 | 玉龍 一、简介 隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA)是由 David M. Blei、Andrew Y. Ng、Michael I. Jordan 在2003年提出的,是一种词袋模型,它认为文档是一组词构成的集合,词与词之间是无序的。一篇文档可以包含多个主题,文档中的每个词都是由某个主题生成的,LDA给出文档属于每个主题的概率分布,同时给出每个主题上词的概率分布。LDA是一种无监督学习,在文本主题识别、文本分类、文本相似度计算和文章相似推荐等方面都
作者:夏飞 Google | 软件工程师 量子位 已获授权编辑发布 转载请联系原作者 本文作者夏飞,清华大学计算机软件学士,卡内基梅隆大学人工智能硕士,现为谷歌软件工程师。 在这篇文章中,他探讨了机器
但是不要被长度吓到了,我们已经将其分为四个部分(机器学习、统计信息、SQL、其他),以便你可以逐步了解它。
在开始文章之前,分享一个有趣的小故事: 1927年第五届索维尔会议上,爱因斯坦与波尔关于量子力学的争论达到了白热化。爱因斯坦严肃的说,“波尔,上帝不会投骰子!”。而波尔则回应说,“爱因斯坦,别去指挥上帝应该怎么做!”。爱因斯坦坚决不相信物理学最本质的规律是统计性的。 我们今天聊的也是关于统计的算法,看一看抛硬币的故事 一、提出问题 现在我提出这样一个问题:假设一个网站每日有数以亿计的IP访问,如何高效统计ip访问的规模? 这个问题的规模很大,ip访问记录数以亿计的规模,看上去是很吓人的,但其实我们并不关
所谓机器学习和深度学习, 背后的逻辑都是数学, 所以数学基础在这个领域非常关键, 而统计学又是重中之重, 机器学习从某种意义上来说就是一种统计学习。
本节我们介绍可变编解码器内部运行的数学原理,了解了这些原理,我们才能明白可变编解码器的设计思想。首先我们需要介绍信息量的概念,它来自于信息论(1):
GAMLSS模型是一种半参数回归模型,参数性体现在需要对响应变量作参数化分布的假设,非参数性体现在模型中解释变量的函数可以涉及非参数平滑函数,非参数平滑函数不预先设定函数关系,各个解释变量的非线性影响结果完全取决于样本数据。它克服了GAM模型和广义线性模型(Generalized Linear Models, GLM)的一些局限性。
领取专属 10元无门槛券
手把手带您无忧上云