超强的灵活性,丰富的功能,为人机交互带来更加安全和易用的解决方案的同时,保障了设备开发商对自身品牌的保有和控制。
图源:unsplash 来源 | 雷克世界(公众号ID:raicworld) 编译 | 嗯~是阿童木呀、EVA 导语:在本文中,我们描述了Google最新发布的一个用于帮助训练和评估关键词识别系统的口语词汇组成的音频数据集。讨论了为什么这个任务是一个有趣的挑战,以及为什么它需要一个专门的,与用于对完整句子进行自动语音识别的传统数据集所不同的数据集。 我们提出了一种对该任务进行可重复、可比较的精确度指标度量方法。描述了数据是如何被收集和验证的,它所包含的内容,以及其以前的版本和属性。通过报告在该数据集上训练的
作为运动相机,必须要满足运动场景下的HANDS-FREE解放双手的操作,而语音则以用户最自然的方式,赋予用户直观,强大和自然的人机交互方式。
消费者越来越需要可以随时通过语音控制的产品,可以与数字世界更加安全的和自然的交互。
云端语音服务最主要的问题就是隐私和安全的问题,其次是识别率(Accuracy),功耗和处理时间(prcessing time)等问题。其中隐私,又涉及到深层次的技术和伦理问题(mix of technical ability and ethics)。
⚫ 加窗:分帧后,每一帧的开始和结束都会出现间断。因此分割的帧越多,与原始信号的误差就越大, 加窗就是为了解决这个问题,使成帧后的信号变得连续,并且每一帧都会表现出周期函数的特性。
语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。 语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别技术车联网也得到了充分的引用,例如在翼卡车联网中,只需按一键通客服人员口述即可设置目的地直接导航,安全、便捷。
亚马逊正朝着更具响应性,情境感知的语音体验迈进,部分归功于主题建模,即识别主题以帮助更准确地响应请求。
语音控制的基础就是语音识别技术,可以是特定人或者非特定人的。非特定人的应用更为广泛,对于用户而言不用训练,因此也更加方便。语音识别可以分为孤立词识别,连接词识别,以及大词汇量的连续词识别。对于智能机器人这类嵌入式应用而言,语音可以提供直接可靠的交互方式,语音识别技术的应用价值也就不言而喻。 1 语音识别概述 语音识别技术最早可以追溯到20世纪50年代,是试图使机器能“听懂”人类语音的技术。按照目前主流的研究方法,连续语音识别和孤立词语音识别采用的声学模型一般不同。孤立词语音识别一般采用DTW动态时间规整
选自Google Research 机器之心编译 参与:路雪 近日,谷歌开放语音命令数据集,发布新的音频识别教程,旨在帮助初学者利用深度学习解决语音识别和其他音频识别问题。 语音命令数据集地址:http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz 音频识别教程地址:https://www.tensorflow.org/versions/master/tutorials/audio_recognition 在谷歌,我们经常被问到如何使
智能外呼在国内已发展多年,整体的技术早已非常成熟。那么一个简单的智能外呼系统应该包含哪些东西呢?
李林 编译整理 量子位 报道 | 公众号 QbitAI Google今天推出了一个语音指令数据集,其中包含30个词的65000条语音,wav格式,每条长度为一秒钟。 这30个词都是英文的,基本是yes
对话是人与人之间交换信息的普遍方式。人可以在交流时通过判别对方的语气、眼神和表情判断对方表达的情感,以及根据自身的语言、文化、经验和能力理解对方所发出的信息,但对于只有0(false)和1(true)的计算机来讲,理解人的对话是一件非常困难的事情,因为计算机不具备以上能力,所以目前的语音交互主要由人来设计。有人觉得语音交互设计就是设计怎么问怎么答,看似很简单也很无聊,但其实语音交互设计涉及系统学、语言学和心理学,因此它比GUI的交互设计复杂很多。
Sensory升级其TrulyHandsFree低功耗语音唤醒和交互技术,支持Amazon的VII(Voice Interoperability Initiative)倡议。
Sensory,嵌入式语音,视觉,和生物识别技术供应商和开拓者,于今日升级其TrulyHandsfree唤醒词引擎,支持不同产品组合,定制唤醒词,小词汇语音命令,甚至自定义唤醒词。
谷歌的工程师们经常被问到这样的一个问题——怎么上手用深度学习做语音识别或其它音频识别,比如关键词或指令? 目前,出现了一些很优秀的开源语音识别系统,例如Kaldi,就能把神经系统作为其中的一个模块。但其的高度复杂性,并不适合 解决简单问题的指南。更重要的是,对于新手而言,免费、公开可获取到的数据并不多,适合简单的关键词也不是很多。 为解决这一问题,谷歌的TensorFlow 和 AIY 团队创建了TensorFlow 和 AIY 团队创建了Speech Commands Dataset,即“语音命令数据
亚马逊Echo和Echo Dot智能音箱获得了成功,它已经使语音命令(通常称为语音UI或语音UI)出现在了新技术产品中。在每一部智能手机和平板电脑上,大多数新型汽车上,以及快速增长的音频产品中,都有这个功能。最终,大多数家用电器,音频和视频产品,甚至像健身跟踪器这样的可穿戴设备,最终也都会有语音命令功能。
语音唤醒在学术上被称为keyword spotting(简称KWS),给它做了一个定义:在连续语流中实时检测出说话人特定片段。
“AI+IoT”将是未来的风口,各种应用和商机将成井喷式增长,国内外各大互联网巨头早已提前布局AI+IoT的战略,这同时也是恩智浦的核心战略之一。AI+IoT技术的应用,大到汽车和电视,小到灯泡、闹钟,都可以使用AI的控制技术。
对于想进入语音识别领域的学习者来说,了解语音识别系统的一些基本概念,会有助于更快的进入这个行业的交流平台,本文对语音识别系统的一些常见概念做了整理,希望能对刚开始接触语音学习的人有所帮助。
Sensory是嵌入式语音软件,或者说是边缘侧语音技术的行业和技术领导者,作为专注于边缘侧语音人工智能的厂商,Sensory可以用很多种技术方式和解决方案满足用户对隐私的关切。
在电影《钢铁侠》中,我们看到托尼·斯塔克在建造设备时与人工智能贾维斯交流。托尼向贾维斯描述了他需要的零件,贾维斯控制机械臂协助托尼完成任务。随着当今技术的发展,这种实现只是时间问题。因此,我决定尝试自己实现这个功能,用语音控制来操作机械臂,实现人工智能的简单应用。
VoiceHub采用非常直观的界面和非常简单的操作,帮助我们的客户快速生成支持语音用户界面(VUI)所需的模型文件。
前言:本文作者@焦糖玛奇朵,是我们“AI产品经理大本营”早期成员,下面是她分享的第1篇文章,欢迎更多有兴趣“主动输出”的朋友们一起加入、共同进步:) 音频由公众号“闪电配音”提供 媒体和AI巨头们乐于给大众描绘一幅幅精彩的未来生活蓝图:人工智能可以化身为你的爱车,在沙漠、森林或小巷中风驰电掣;可以是智慧公正的交警,控制红绿灯、缓解交通的拥挤;还可以是给人以贴心照顾的小助理,熟悉你生活中的每一处小怪癖。 在看到这些美妙的畅想之后,作为一个严谨认真的AI产品经理,我不禁想去探索上述美好未来的实现路径;今天,
机器之心报道 机器之心编辑部 在大型语言模型的加持下,智能音箱领域的「拐点」即将到来? 在智能音箱风靡的那些年,很多人都希望能与音箱来一场深度对话。可惜事与愿违,智能音箱的对话能力显然达不到人类的要求。如今,智能音箱的市场红利期已经过去,昔日光环消退,渐渐不再为人提起。 一位名为「GPTHunt」的 Up 主也是一样,自述是智能语音音箱的「轻度爱好者」。只是失望的次数太多了,也就不再抱有希望。 比如,他买过亚马逊的 Alexa 音箱,但发现自己英语水平不太够,此外音箱产品设计也不够 local,试用了一阵
Sensory Inc.作为向全球移动设备提供先进的复杂生物识别算法的供应商,于近期展示了其采用面部和声音识别算法的AI虚拟银行助理技术。
语言作为人类的一种基本交流方式,在数千年历史中得到持续传承。近年来,语音识别技术的不断成熟,已广泛应用于我们的生活当中。语音识别技术是如何让机器“听懂”人类语言?本文将为大家从语音前端处理、基于统计学语音识别和基于深度学习语音识别等方面阐述语音识别的原理。
有专家预测,到2020年,企业将实现与客户对话的自动化。据统计,由于呼叫中心的员工要么没有接好电话,要么没有足够的能力进行有效沟通,公司损失了多达30%的来电。
「语音识别」已经跟随着手机语音助手和智能音箱的普及变成了普通人日常生活的一部分,然而尽管包括谷歌、微软在内的诸多公司纷纷宣称其模型可以在标准数据集上「词错率降低到 6% 以下」、「水平超过普通人」乃至「水平超过专业速记员」,但是真实的场景里有很多标准数据集上不会出现的情况:远场问题、鸡尾酒会问题、中英文夹杂问题等等,这些情况的存在导致现实生活中,语音识别模型的效果还远远达不到人类的期望,亟待解决的问题还有很多。
8月份,NVIDIA开源了一个深度学习推断库——Jetson Voice ,专为Jetson Nano、TX1/TX2、Xavier NX和AGX Xavier等嵌入式设备而设计,为AI技术带来了更多可能性。现在,让我们深入了解这个Jetson Voice 吧。
摘要总结:Mozilla开源语音识别模型和世界第二大语音数据集,以帮助研究人员进行语音识别研究。其中包括DeepSpeech项目,一个由Mozilla开发的语音到文本转换引擎,以及Common Voice项目,这是一个由全球公众贡献的语音数据集。
自然语言理解就是希望机器像人一样,具备正常人的语言理解能力,由于自然语言在理解上有很多难点(下面详细说明),所以 NLU 是至今还远不如人类的表现。
作为消费者,我们正在转向一个免提的数字世界。现在投放市场的大多数移动设备都配备了最新的人工智能(AI)技术,使我们能够用语音进行搜索,而不是输入。
今日,微软宣布自定义语音服务成为加入微软识别服务行列的最新程序。自定义语音服务是一款可以高度灵活地把语音转换成文字的程序,它可以被认为是更智能版的Siri或Google Assistant。 自定义语
2019年9月7日,一知智能受邀参加由AICUG人工智能技术社区主办的AI 先行者大会(AI Pioneer Conference),大会聚焦国际AI前沿技术、产业落地,汇聚中美AI行业领袖与技术大咖,共同探讨人工智能行业的发展与未来。
提取视频文件中的图像然后使用OCR技术识别静态图像中的文本,提取视频文件中的音频然后使用语音识别技术提取其中的文本,如果视频文本或音频文本中包含指定的关键词则进行提示。
Syntiant,领先的人工智能芯片创业公司,为边缘侧提供智能语音解决方案(intelligent voice solutions)。
内容概览:当语音识别遇上方言,会是一个很棘手的问题。而如果对垒双方,变成了战斗机的语言控制,和带有印度方言的英语发音,这个问题又会怎么样?近日,现实中就上演了这样的一幕。
大多数情况下,像Google Home,亚马逊的Echo和苹果的HomePod这样的AI驱动的智能扬声器是相对无害的。它们所做的一般是播放音乐和网络电台,强调即将到来的日历事件,发布外卖订单,提供最新的天气预报等等。但正如本月涉及Alexa演讲者的事件所表明的那样,他们并不完美,他们的不完美使他们容易受到外部攻击。
本期谈谈 《虚拟私人助理》相关的内容。 我们先大致看下人工智能10大细分行业的典型应用: 1、深度学习/机器学习: 预测数据模型与分析数据的软件平台; 垃圾邮件检测; 金融诈骗检测; 2、自然语言处理: 语音识别; 智能客服; 智能化软件帮助系统; 智能化知识管理系统; 智能企业形象代表; 智能导游; 智能查询系统; 3、计算机视觉/图像识别: 面部识别软件; 基于内容的图片检索; 智能交通; 医疗计算机视觉和医学图像处理; 军事探测和导弹制导; 无人驾驶环境检测; 4、手势控制: 电脑手势指令系统; 游
选自Awni 机器之心编译 参与:Nurhachu Null、路雪 深度学习应用到语音识别领域之后,词错率有了显著降低。但是语音识别并未达到人类水平,仍然存在多个亟待解决的问题。本文从口音、噪声、多说话人、语境、部署等多个方面介绍了语音识别中尚未解决的问题。 深度学习被应用在语音识别领域之后,词错率有了显著地降低。然而,尽管你已经读到了很多这类的论文,但是我们仍然没有实现人类水平的语音识别。语音识别器有很多失效的模式。认识到这些问题并且采取措施去解决它们则是语音识别能够取得进步的关键。这是把自动语音识别(
随着自然语言理解等技术的发展,对话机器人如今盛行,而基于此的智能音箱产品的发展也异常火热。
现实生活中,越来越多的地方需要使用到语音识别,微信里客户的长条语音,游戏里更方便快速的交流,都是语音识别的重要场景。现在为大家强力推荐腾讯云语音识别,一款为企业和开发者提供极具性价比的语音识别服务。腾讯云语音识别服务经微信、腾讯视频、王者荣耀、和平精英等大量内部业务验证;同时也在线上线下大量互联网、金融、教育等领域的外部客户业务场景下成功落地。同时日服务亿级用户,具有海量数据支撑、算法业界领先、支持语种丰富、服务性能稳定、抗噪音能力强、识别准确率高等优势。
机器之心专栏 作者:温正棋 极限元智能科技 本文作者温正棋为极限元智能科技 CTO 、中国科学院自动化研究所副研究员,毕业于中国科学院自动化研究所,先后在日本和歌山大学和美国佐治亚理工学院进行交流学习,在国际会议和期刊上发表论文十余篇,获得多项关于语音及音频领域的专利。其「具有个性化自适应能力的高性能语音处理技术及应用」获得北京科学技术奖。在语音的合成、识别、说话人识别等领域都有着多年深入研究经验,并结合深度学习技术开发了多款语音应用产品。 为了提高客户满意度、完善客户服务,同时对客服人员工作的考评,很多企
随着智能音箱、语音助手等应用的出现,普通人也可以像科幻场景一样使用语音与机器进行交流。语音关键词检测是实现人机语音交互的重要技术,被广泛地应用于各类智能设备、语音检索系统当中。语音关键词检测可以分成两种,一种是用于设备唤醒、设备控制keyword spotting;一种是应用于语音文档检索的spoken termdetection,二者虽然名字类似,但从功能侧重和技术路线上都有所区别。本次分享介绍语音关键词检测的主要方法与最新进展。
可以说,语音识别是人类征服人工智能的前沿阵地,是目前机器翻译、自然语言理解、人机交互等的奠基石。
在众多汉字中,同音字(词)是一个特别的存在,正确使用,妙趣横生,使用不当,错误百出。 有网友曾戏谑:再智能的语音识别,遇到同音字(词)都可能“秒变智障”。 有时候,明明是一个温馨感动的时刻,语音识别偏偏剑走偏锋,让你措手不及。 例如: 一下子画风突变。 而语音识别在同音字(词)方面的尴尬还不止于此。 人名“王倩”和“王茜”、小区名“书香苑小区”和“书香院小区”、餐饮词汇“食全食美”和“十全十美”、服装词汇“百衣百顺”和“百依百顺”,乃至日常沟通中的“肌肉”和“鸡肉”、“失忆”和“诗意”、“北麓
说话的声音(声带震动)和其他声音相比,有独特的时域和频域模式。声带的震动产生基频(fundamental frequency),口腔共振(the pharyngeal and oral resonance cavities)等产生高频谐波
领取专属 10元无门槛券
手把手带您无忧上云