首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

观察到的角度6

角度6:云原生

云原生是一种软件架构和开发方法论,旨在支持应用程序在云环境中的敏捷开发、部署、扩展和管理。它的主要特点包括容器化、微服务架构、自动化管理和弹性伸缩。云原生应用程序的设计理念是将应用程序和基础设施解耦,以实现更高的可靠性、可扩展性和敏捷性。

云原生的主要优势包括:

  1. 弹性伸缩:云原生应用程序可以根据实际负载情况进行自动伸缩,提高资源利用率和性能。
  2. 敏捷开发和部署:通过容器化和微服务架构,开发人员可以快速部署和更新应用程序,提高开发效率和交付速度。
  3. 高可用性和容错性:云原生应用程序的设计理念使其能够容忍硬件故障和网络中断,从而提供高可用性和容错性。
  4. 灵活性和可移植性:云原生应用程序可以在不同的云平台和环境中运行,具有很高的可移植性和灵活性。
  5. 资源利用率和成本效益:通过弹性伸缩和自动化管理,云原生应用程序可以更好地利用资源,提高成本效益。

云原生应用程序适用于以下场景:

  1. 大规模应用程序:云原生架构适用于需要处理大量用户请求和数据的应用程序,如电子商务平台、社交媒体应用等。
  2. 敏捷开发和部署:云原生开发方法论适用于需要频繁部署和更新的应用程序,如持续集成和持续交付的场景。
  3. 弹性伸缩需求:云原生应用程序适用于具有波动性负载的场景,可以根据负载情况自动伸缩资源。
  4. 高可用性和容错性要求:云原生应用程序适用于对可用性和容错性要求较高的应用程序,如金融交易系统、在线游戏等。

腾讯云提供了一系列与云原生相关的产品和服务:

  1. 云原生容器服务:提供基于 Kubernetes 的容器编排和管理服务,帮助用户快速部署和管理容器化应用程序。了解更多:云原生容器服务
  2. 云原生数据库 TDSQL-C:基于 TiDB 开源技术的弹性分布式数据库服务,支持水平扩展和高可用性。了解更多:云原生数据库 TDSQL-C
  3. 云原生应用安全服务:提供容器镜像安全扫描、容器运行时安全监测等功能,帮助用户保障云原生应用的安全。了解更多:云原生应用安全服务
  4. 云原生网络服务:提供灵活的网络配置和管理工具,支持云原生应用程序的网络通信。了解更多:云原生网络服务

以上是关于云原生的概念、分类、优势、应用场景以及腾讯云相关产品和服务的介绍。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 基于三维向量对的乱序堆叠物体的位姿识别

    摘要:针对乱序堆叠物体识别效率低、速度慢的问题,提出一种快速可靠的3D对象检测可以应用于复杂场景中随机堆积的物体。所提出的方法使用“3D向量对”具有相同的起点和不同的终点,并且它具有表面正态分布作为特征描述符。通过考虑向量对的可观察性,提出的方法已取得较高的识别性能。可观察性向量对的因数是通过模拟可见光来计算的从各种角度来看向量对的状态。通过整合提出的可观察性因子和独特性因子,向量对可以有效提取和匹配,并将其用于对象姿态估计。实验已经证实,提出的方法较先进的方法,识别成功率从45.8%提高至93.1%,提出的方法的处理时间对于机器人垃圾箱拣选来说足够快。

    02

    Cell:视觉错觉运动刺激的探索:基于EEG的实用辅助系统的脑机接口

    本文提出了一种基于视觉错觉运动刺激(illusory visual motion stimuli)的脑机接口(BCI),旨在使用提出的系统来增强运动想象(MI)的范式。由于运动想象需要较长时间的训练,因此通过感官系统进行外部刺激的刺激方法是一种提高效率的替代方法。该项研究分为两个部分。首先,研究人员观察了基于脑地形图的视觉运动错觉模式。其次,研究者实现了基于视觉错觉运动刺激的BCI系统。箭头和移动箭头模式用于调节视觉皮层和运动皮层的alpha节律。箭头模式的平均分类准确率约为78.5%。另外,使用提出的特征提取和决策算法,提出了基于视觉错觉运动刺激的BCI系统。该BCI系统可以通过设计的算法控制光标左右移动,生成5个辅助通信指令。10名志愿者参与了这项实验,并使用了一个带有运动想象和视觉错觉运动的脑机接口系统来比较效率。结果表明,该方法比运动想象的准确率提高了约4%。所提出的视觉错觉运动刺激和算法的正确率约为80.3%。研究人员表示,可以在基于MI的脑机接口系统中加入一种视觉错觉运动刺激混合脑机接口系统,以进行初学者运动想象。

    03

    干货 | DeepMind 提出 GQN,神经网络也有空间想象力

    AI 科技评论按:人类理解一个视觉场景的过程远比看上去复杂,我们的大脑能够根据已有的先验知识进行推理,推理的结果所能涵盖的内容也要远超出视网膜接收到的光线模式的丰富程度。比如,即便是第一次走进某个房间,你也能马上就认出房间里都有哪些东西、它们的位置又都在哪里。如果你看到了一张桌子下面有三条腿,你很容易推断出来很有可能它还有一条一样形状、一样颜色的第四条腿,只不过现在不在可见范围里而已。即便你没法一眼看到房间里所有的东西,你也基本上能描绘出房间里的大致情况,或者想象出从另一个角度看这间房间能看到什么。

    03

    Action perception as hypothesis testing

    我们提出了一种新颖的计算模型,将动作感知描述为一种主动推理过程,结合了运动预测(重用我们自己的运动系统来预测感知运动)和假设检验(使用眼球运动来消除假设之间的歧义)。该系统使用如何执行(手臂和手)动作的生成模型来生成特定假设的视觉预测,并将扫视引导到视觉场景中信息最丰富的位置,以测试这些预测和潜在的假设。我们使用人类行为观察研究中的眼动数据来测试该模型。在人类研究和我们的模型中,每当上下文提供准确的动作预测时,眼跳都是主动的;但不确定性会通过跟踪观察到的运动而引发更具反应性的凝视策略。我们的模型提供了一种关于行动观察的新颖视角,突出了其基于预测动态和假设检验的主动性质。

    01

    HumanNeRF:从单目视频中实现移动人物的自由视点渲染

    给定一个人类表演活动的单个视频,我们希望能够在任何一帧暂停,并围绕表演者旋转360度,以便在那个时刻从任何角度观看(图1)。这个问题——移动物体的自由视点渲染——是一个长期存在的研究挑战,因为它涉及到合成以前看不见的相机视图,同时考虑布料褶皱、头发运动和复杂的身体姿势。这个问题对于在本文中所讨论的用单个相机拍摄的“现场”视频(单目视频)来说尤其困难。以前的神经渲染方法通常假设多视图输入、仔细的实验室捕捉,或者由于非刚体运动而在人类身上表现不佳。特定于人类的方法通常假设SMPL模板作为先验,这有助于约束运动空间,但也会在服装中引入SMPL模型无法捕捉到的伪影和复杂运动。最近可变形的NeRF方法对于小的变形表现良好,但在舞蹈等大型全身运动中表现不佳。本文介绍了一种称为HumanNeRF的方法,该方法将移动的人的单个视频作为输入,在每帧、现成的分割(通过一些手动清理)和自动3D姿势估计之后,优化人体的标准体积T姿势,以及通过后向扭曲将估计的标准体积映射到每个视频帧的运动场。运动场结合了骨骼刚性运动和非刚性运动,每种运动都以体积表示。其解决方案是数据驱动的,标准体积和运动场源自视频本身,并针对大型身体变形进行了优化,端到端训练,包括3D姿势细化,无需模板模型。在测试时,可以在视频中的任何一帧暂停,并根据该帧中的姿势,从任何视点渲染生成的体积表示。

    01

    在机器人骨架上培养活细胞:将人类细胞放入「生物反应器」,再给点营养液

    机器之心报道 编辑:杜伟、陈萍 在移动的机器人骨架上,通过拉伸人类肌腱细胞促进其生长,效果就像人类在移动时所做的那样。这是今天发表在《自然 - 通讯工程》上的一项新研究。 组织工程科学是一门以细胞生物学和材料科学相结合,进行体外或体内构建组织或器官的新兴学科,这一技术虽然在很大程度上处于起步阶段,但迄今为止,皮肤细胞、软骨组织甚至是从人体细胞样本中培育出来的气管都已植入患者体内。 但事实证明,培养可用的人体肌腱细胞是非常棘手的,这需要拉伸和扭曲。在过去的二十年里,科学家们通过反复向一个方向拉伸肌腱细胞和组

    01

    Nature | COVID-19疾病进展期间肺病理的空间景观

    截至2021年2月,COVID-19疾病已经蔓延成为全球大流行,超过1亿人感染,导致超过200万人死亡。研究表明,COVID-19疾病的严重程度是由免疫系统为了清除病毒而过度激活引起的炎症综合征驱动的。持续性炎症可导致肺组织损伤,肺水肿液渗出,导致呼吸困难和急性呼吸窘迫综合征(ARDS)。外周血或支气管肺泡灌洗液中的免疫分析揭示了免疫系统的主要变化,如过度的中性粒细胞激活,淋巴细胞减少,和异常的适应性免疫系统反应。然而,在空间背景下对受感染组织和免疫系统的深入分析直到最近才开始,目前缺乏对大多数受感染器官(包括肺)的深入分析。为了阐明COVID-19疾病肺部感染期间的细胞组成、空间背景以及免疫细胞和主要细胞类型之间的相互作用。文中对COVID-19患者、其他导致急性呼吸系统综合症(ARDS)的肺部感染患者和健康个体的死后肺组织进行了成像质谱流式细胞技术检测。

    02
    领券