首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    matlab ga算法_基因算法和遗传算法

    我们首先从函数出发,既然是寻找全局最优解,我们可以想象一个多元函数的图像。遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。可以这样想象,这个多维曲面里面有数不清的“山峰”,而这些山峰所对应的就是局部最优解。而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。(另外,值得注意的是遗传算法不一定要找“最高的山峰”,如果问题的适应度评价越小越好的话,那么全局最优解就是函数的最小值,对应的,遗传算法所要找的就是“最深的谷底”)

    02

    深度学习经典算法 | 遗传算法详解

    在一定的时间内,有一群兔子,其中一些比另外一些兔子跑得快,而且更聪明,这些兔子被狐狸吃掉的可能性比较小,因此它们中的多数就存活下来并繁殖更多的兔子。当然,一些跑得慢而愚蠢的兔子也会存活下来,只是因为它们比较侥幸,这些存活的兔子群开始生育。生育的结果是兔子遗传材质的充分融合:一些跑得慢的兔子生出了跑得快的兔子,一些跑得快的兔子生出跑得更快的,一些聪明的兔子生出了愚蠢的兔子,等等。在最顶层,自然界不时地变异一些兔子的基因材质。所产生的小兔子平均来说要比原始的群体更快更聪明,因为从狐狸口中生存下来的父代多数是跑得更快、更聪明的兔子。同样,狐狸也经历相似的过程,否则兔子可能跑得太快又太聪明以致狐狸根本抓不到了。

    02

    Matlab遗传算法工具箱的使用及实例(线性规划)

    在使用遗传算法(Genetic Algorithm,GA)之前,你得了解遗传算法是干什么的。遗传算法一般用于求解优化问题。遗传算法最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程。在求解较为复杂的组合优化问题时,相对一些常规的优化算法,通常能够较快地获得较好的优化结果。

    04

    NSGA-Ⅱ算法Matlab实现(测试函数为ZDT1)

    NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面: ①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体; ②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度; ③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。

    02

    人工智能:智能优化算法

    优化问题是指在满足一定条件下,在众多方案或参数值中寻找最优方案或参数值,以使得某个或多个功能指标达到最优,或使系统的某些性能指标达到最大值或最小值。优化问题广泛地存在于信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域。优化方法是一种以数学为基础,用于求解各种优化问题的应用技术。各种优化方法在上述领域得到了广泛应用,并且已经产生了巨大的经济效益和社会效益。实践证明,通过优化方法,能够提高系统效率,降低能耗,合理地利用资源,并且随着处理对象规模的增加,这种效果也会更加明显。 在电子、通信、计算机、自动化、机器人、经济学和管理学等众多学科中,不断地出现了许多复杂的组合优化问题。面对这些大型的优化问题,传统的优化方法(如牛顿法、单纯形法等)需要遍历整个搜索空间,无法在短时间内完成搜索,且容易产生搜索的“组合爆炸”。例如,许多工程优化问题,往往需要在复杂而庞大的搜索空间中寻找最优解或者准最优解。鉴于实际工程问题的复杂性、非线性、约束性以及建模困难等诸多特点,寻求高效的优化算法已成为相关学科的主要研究内容之一。 受到人类智能、生物群体社会性或自然现象规律的启发,人们发明了很多智能优化算法来解决上述复杂优化问题,主要包括:模仿自然界生物进化机制的遗传算法;通过群体内个体间的合作与竞争来优化搜索的差分进化算法;模拟生物免疫系统学习和认知功能的免疫算法;模拟蚂蚁集体寻径行为的蚁群算法;模拟鸟群和鱼群群体行为的粒子群算法;源于固体物质退火过程的模拟退火算法;模拟人类智力记忆过程的禁忌搜索算法;模拟动物神经网络行为特征的神经网络算法;等等。这些算法有个共同点,即都是通过模拟或揭示某些自然界的现象和过程或生物群体的智能行为而得到发展;在优化领域称它们为智能优化算法,它们具有简单、通用、便于并行处理等特点。 **

    01

    数学建模竞赛(国赛和美赛)经验分享

    第一次参赛是在大一的暑假参加的国赛,当时和两个同学刚刚组队,我们也没有什么基础,结果可想而知:无奖。 在经历了这一次国赛之后,大一时的两位队友也无心再参加,所以又重新找了两位队友。从此我们队伍成员便确认了下来。这两位分别是一名女生负责排版,一名男生负责建模;而我负责写程序。我们一起准备第二年的国赛,在这期间,我们学校决定自己组织一次建模比赛为国赛做铺垫。我们为了检验自己的学习成果,便参加了。凭借着很好的运气,我们拿了二等奖的好成绩。 时间不久,便到了国赛。在国赛期间,我们每天熬夜熬到很晚,有了一点想法之后就开始讨论,然后发现行不通,又开始讨论,再进行完善……就这么一直反反复复着。直到提交了论文的最后# 在找队友的时候,一定要找靠谱的,自己熟悉的,千万不要临时组队。在准备竞赛这段时间,要经常沟通,彼此磨合,培养默契。 在参加竞赛的时候,不免会讨论得过于激烈,千万不要烦彼此,因为只有交流彼此得思想才会进行碰撞,才有可能找到适合本队得解题办法。 在分工方面,建议有一个人主要负责建模,一个主要负责编程,一个主要负责写论文和排版。三个人对建模、编程、排版都要了解,因为不知竞赛得的时候会有谁的工作量大一些,另外的人还可以去帮忙。三样都懂一些也可以更好的交流,更好的完成作品。

    04
    领券