本文讲的回声(Echo)是指语音通信时产生的回声,即打电话时自己讲的话又从对方传回来被自己听到。回声在固话和手机上都有,小时还可以忍受,大时严重影响沟通交流,它是影响语音质量的重要因素之一。可能有的朋友要问了,为什么我打电话时没有听见自己的回声,那是因为市面上的成熟产品回声都被消除掉了。
信息与通信工程学院 阵列信号处理实验报告(自适应波束形成 Matlab 仿真) …
自适应滤波器的一些经典应用包括系统识别、通道均衡、信号增强和信号预测。建议的应用程序是降噪,这是一种信号增强。下文描述了此类应用程序的一般案例。
比较常用的插值算法有这么几种:最邻近插值,双线性二次插值,三次插值,Lanczos插值等等
深度检测模型在受控环境下非常强大,但在不可见的领域应用时却显得脆弱和失败。 所有改进该问题的自适应方法都是在训练时获取大量的目标样本,这种策略不适用于目标未知和数据无法提前获得的情况。 例如,考虑监控来自社交媒体的图像源的任务:由于每一张图像都是由不同的用户上传的,它属于不同的目标领域,这在训练期间是不可能预见到的。 我们的工作解决了这一设置,提出了一个目标检测算法,能够执行无监督适应跨领域,只使用一个目标样本,在测试时间。 我们引入了一个多任务体系结构,它通过迭代地解决一个自我监督的任务,一次性适应任何传入的样本。 我们进一步利用元学习模拟单样本跨域学习集,更好地匹配测试条件。 此外,交叉任务的伪标记程序允许聚焦于图像前景,增强了自适应过程。 对最新的跨域检测方法的全面基准分析和详细的消融研究显示了我们的方法的优势。
1.方法设计 传统的BP算法改进主要有两类: – 启发式算法:如附加动量法,自适应算法 – 数值优化法:如共轭梯度法、牛顿迭代法、Levenberg-Marquardt算法
自适应滤镜是具有非恒定系数的滤波器。滤波器系数根据通常定义的 cterium 进行调整,以优化滤波器在输入信号中估计未知信号的能力。
Created with Raphaël 2.2.0 开始 选择正交变换,把时域信号转变为变换域信号 变换后的信号用其能量的平方根归一化 采用某一自适应算法进行滤波 结束
在现代分布式应用中,服务请求是由物理机或虚拟机组成的 server 池进行处理的。 通常,server 池规模巨大且服务容量各不相同,受网络、内存、CPU、下游服务等各种因素影响,一个 server 的服务容量始终处于动态变动和趋于稳定的状态,如何设计和实现这种系统的负载均衡算法是一个极具挑战的难题。
他们发明的一种叫做AutoRobotics-Zero (ARZ)的搜索算法,既不靠大模型,也不用神经网络,可以让机器人一旦遇到剧烈的环境变化,就立刻自动更改行动策略。
一篇出自比利时天主教鲁汶大学的研究发表在了ICML 2019识别和理解深度学习现象Workshop上。
机器之心发布 机器之心编辑部 在本文中,嬴彻科技首席技术官(CTO)杨睿刚博士就被本届大会被收录的 5 篇论文为大家带来解读。 一年一度的 CVPR 2021 正如火如荼地在线上举行,来自全球的逾 7,000 位学者通过线上网络分享和交流计算机视觉和人工智能领域的前沿研究。 嬴彻科技首席技术官(CTO),杨睿刚博士,就被本届大会收录的 5 篇论文为大家带来一一解读。此外,作为 CVPR 2021 大会程序主席(Program Chair),他也分享了对今年的大会论文投稿数、接收率、论文质量等方面的看法。 这
领域自适应是迁移学习重点研究的课题之一。以往,基于域不变表征的领域自适应方法由于对域偏移(domain shift)不敏感、能为目标任务获取丰富信息受到了极大关注。然而,在 ICML 2019 上,来自卡内基梅隆大学的研究人员指出,当标签分布不同时,对源任务的过度训练确实会对目标域的泛化起到负作用,并且用严谨的数学证明和丰富的实验说明了:为了提升领域自适应算法的性能,我们不仅需要对齐源域和目标域的数据分布、最小化源域中的误差,还应该对齐源域和目标域的标注函数。
公众号的老观众们应该会记得,在去年这个时候我们公众号发布了有关自适应大领域搜索算法(adaptive large neighborhood search)的相关系列教程,有关传送门如下:
哈喽,大家好呀!这里是码农后端。本篇将带你了解一些常见的密码加密方式。毋庸置疑,密码的安全性对于用户来说是非常重要的,如何保证密码的安全性使其不被破解也是一直以来的一个非常重要的话题。
在海量数据集上训练大型深度神经网络,是非常具有挑战性的。最近,有许多研究均使用大batch随机优化方法来解决此问题。在该研究领域中,目前最杰出的算法是LARS,它通过采用分层自适应学习率,可以在几分钟内在ImageNet上训练ResNet。但是,对于像BERT这样的注意力模型,LARS的表现很差,这说明它的性能提升在不同任务之间并不一致。在本文中,作者首先研究了一种有原则性的分层适应策略,这样就可以使用大的mini-batch来加速深度神经网络的训练。
谷歌等团队发布了遗传编程最新成果——AutoRobotics-Zero(ARZ)。最新论文已被IROS 2023接收。
现在我们对算术编解码算法进行了简要的分析,并讨论了将编码流中描述视频帧内容的语法元素的值转换为二进制 bin 流的过程,这才是实际进行二进制算术的过程编码。然而,有一些重要的事情我们还没有讨论。首先,在迄今为止所考虑的算法中,编码和解码都是通过分割当前区间来完成的。区间长度始终小于 1,因此必须使用非整数算术执行计算。其次,编码和解码需要有关被编码符号出现概率的信息,即最不可能出现的符号 的概率 以及该符号的值。编码器和解码器从哪里获取这些信息?最后,我们仍然没有解决 CABAC 术语中“上下文自适应”的实际含义。现在让我们来解决这些剩下的问题。
人员聚众监控视频分析检测系统通过python+yolov5深度网络模型技术,人员聚众监控视频分析检测算法对现场监控画面中人员异常聚众时,不需人为干预人员聚众监控视频分析检测算法提醒后台值班人员及时去处理、避免发生更大的不可控的局面。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。
作者:Haotian Wang,Xiaolong Zhou,Jianyong Li,Zhilun Yang,Linlin Cao
1 前言 朋友们~好久没见~。在上一篇基于自搭建BP神经网络的运动轨迹跟踪控制(一)中,首次给大家介绍了如何将BP神经网络模型用于运动控制,并基于matlab做了仿真实验。最终实现了对期望轨迹的智能跟踪的功能。 但是,在那篇文章的最后,也提出了一个有趣的问题,该问题是:“该实验进行参数辨识需要先采集好数据到工作区间进行离线训练,然后再把参数一个个填到BP网络的控制系统中。如果隐含层神经元数量过多的话,那么这个工作无疑是繁琐的。那么有什么办法可以解决呢?”不知道大家有没有认真思考过这个问题,并自己尝试去解答(
渣土车智能识别系统通过yolov5网络模型深度学习技术,渣土车智能识别系统对禁止渣土车通行现场画面中含有渣土车时进行自动识别监测,渣土车智能识别系统并自动抓拍告警。YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:输入端,在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错。
看到标题中的几个关键字系统自适应限流是不是觉得高大上,这个自适应又是如何实现的呢?
工人规范操作识别检测通过yolov5+python网络模型技术,工人规范操作识别检测对工人的操作进行实时监测,当工人规范操作识别系统检测到工人操作不符合规范时,将自动发出警报提示相关人员采取措施。行为检测合规算法中应用到的YOLOv5中在训练模型阶段仍然使用了Mosaic数据增强方法,该算法是在CutMix数据增强方法的基础上改进而来的。CutMix仅仅利用了两张图片进行拼接,而Mosaic数据增强方法则采用了4张图片,并且按照随机缩放、随机裁剪和随机排布的方式进行拼接而成。这种增强方法可以将几张图片组合成一张,这样不仅可以丰富数据集的同时极大的提升网络的训练速度,而且可以降低模型的内存需求。
找出训练好的深度神经网络(DNN)的计算冗余部分是剪枝算法要解决的关键问题。许多算法都试图通过引入各种评估方法来预测修剪后的子网的模型性能 。在这个工作中,我们提出了一种称为EagleEye的剪枝方法,其中使用了一个基于自适应批归一化adaptive batch normalization 的简单而有效的评估组件,以揭示不同的修剪DNN结构与其最终确定精度之间的强相关性。这种强相关性使我们能够以最高的潜在准确率快速发现修剪后的候选对象,而无需实际对它们进行微调。该模块对一些已有的剪枝算法也具有通用性,便于插件化和改进。在我们的实验中,EagleEye获得了比所有研究的剪枝算法都要好的剪枝性能。具体而言,要修剪MobileNet V1和ResNet-50,EagleEye的性能要比所有比较方法高出 3.8 % 3.8% 3.8%。即使在更具挑战性的修剪MobileNet V1紧凑模型的实验中,EagleEye修剪了50%的操作(FLOP),可达到70.9%的精度。所有精度结果均为Top-1 ImageNet分类精度。
清华大学大数据研究中心机器学习研究部长期致力于迁移学习研究。近日,该课题部开源了一个基于 PyTorch 实现的高效简洁迁移学习算法库:Transfer-Learn。使用该库,可以轻松开发新算法,或使用现有算法。
Trans-Learn是基于PyTorch实现的一个高效、简洁的迁移学习算法库,目前发布了第一个子库——深度域自适应算法库(DALIB),支持的算法包括:
数独对计算机来说不是什么难事,但就是这样一个“平平无奇”的项目却登上了GitHub今日的热榜。
【导读】现有的MAML算法都是基于策略梯度的,在试图利用随机策略的反向传播估计二阶导数时遇到了很大的困难。本文为大家介绍一个新框架ES-MAML,这是一个基于进化策略,解决与模型无关的元学习(model agnostic meta learning,MAML)问题的新框架。
1. In this method, the raw data of I and Q channels is divided into blocks at first, then each block is transformed into time-frequency domain by 2D-RDGT (Two-Dimensional Real valued Discrete Gabor Transform) and the desired bits are allocated to each frequency plane, finally each frequency plane is quantized with BAQ.
随着大规模数据集的出现,在海量数据集上训练大型深度神经网络,甚至使用随机梯度下降(Stochastic Gradient Descent,SGD)等计算效率高的优化方法,都已变得尤为具有挑战性。例如,BERT和ResNet-50等最先进的深度学习模型在16个TPUv3芯片上训练需要3天,在8台Tesla P100 GPU上训练需要29小时。
参考文档: Adaptive Thresholding for the DigitalDesk.pdf
从 UI自动化的角度来看,实现功能,只需要通过 UI工具即可实现。在自动化中的作用是将界面功能转化为可执行、可用甚至可行的业务流程,从产品功能导入到用户行为变化都可以完成这种自动化操作。通常,自动软件在测试和推出新系统时会需要一些人工干预而导致数据偏差会比较大。但是 UI与软件一样也是需要人工干预使用的,可以通过自动化机器人实现相应效果。本文将分析什么是 VSM (自适应自动化)和 VSM (自然语言处理)。
由计算机科学博士生Francis Ya领导的斯坦福大学研究小组推出了一个名为Puffer的新免费直播电视流媒体服务网站。
视频在线观看的用户体验是视频行业差异化的一个关键点,而自适应码流技术便是其中的关键技术。本周的技术解码就由楚雄老师带大家玩转视频播放,解码自适应码流技术. 随着泛娱乐行业的兴起,音视频服务已经逐渐成为人们生活不可或缺的部分,Cisco Study指出截止2019年,音视频已经占据了互联网上80%以上的流量。 Statista 对 2017-2022 年的全球音视频流量进行了预估,结果表明在未来的 2-3年内视频产业将继续保持强劲的增长趋势。在如此巨大的流量下,各视频厂商也在积极探索视频产业的盈
全面的语义分割是鲁棒场景理解的关键组成部分之一,也是实现自动驾驶的要求。在大规模数据集的驱动下,卷积神经网络在这项任务上表现出了令人印象深刻的结果。然而,推广到各种场景和条件的分割算法需要极其多样化的数据集,这使得劳动密集型的数据采集和标记过程过于昂贵。在分割图之间结构相似的假设下,领域自适应有望通过将知识从现有的、潜在的模拟数据集转移到不存在监督的新环境来解决这一挑战。虽然这种方法的性能取决于神经网络学习对场景结构的高级理解这一概念,但最近的工作表明,神经网络倾向于过度适应纹理,而不是学习结构和形状信息。 考虑到语义分割的基本思想,我们使用随机图像风格化来增强训练数据集,并提出了一种有助于纹理适配的训练程序,以提高领域自适应的性能。在使用有监督和无监督方法进行合成到实域自适应任务的实验中,我们表明我们的方法优于传统的训练方法。
在线“看片”时,我们经常会遇到这些事情:视频画面突然卡住进入缓冲状态或者视频画面突然变得模糊而不忍直视。这些事情的背后很可能是网络环境突然变差了导致下载速度很慢,也可能是码率调整算法没有对当前环境做出合理的决策导致。 事实上,如何感知网络环境的变化并作出合理的码率调整并非易事。目前很多视频播放的客户端都提供了几种码率档位(标清、高清、超清、蓝光等)供用户自主选择,在网络环境好时用户可以自主切到高码率档位,网络环境差时切到低码率档位。 当然,有些主流的视频播放客户端也提供了自适应(自动)这个选项,比如Y
为了改进蝴蝶算法容易陷入局部最优和收敛精度低的问题,本文从三个方面对蝴蝶算法进行改进。首先通过引入柯西分布函数的方法对全局搜索的蝴蝶位置信息进行变异,提高蝴蝶的全局搜索能力;其次通过引入自适应权重因子来提高蝴蝶的局部搜索能力;最后采用动态切换概率 p p p平衡算法局部搜索和全局搜索的比重,提升了算法的寻优性能。因此本文提出一种混合策略改进的蝴蝶优化算法(CWBOA)。
图像增强—自适应直方图均衡化(AHE)-限制对比度自适应直方图均衡(CLAHE)
事实上,如何感知网络环境的变化并作出合理的码率调整并非易事。目前很多视频播放的客户端都提供了几种码率档位(标清、高清、超清、蓝光等)供用户自主选择,在网络环境好时用户可以自主切到高码率档位,网络环境差时切到低码率档位。
工厂安全着装识别检测系统通过Python基于YOLOv5技术,工厂安全着装识别检测系统对现场画面中的人员着装穿戴进行实时分析检测,工厂安全着装识别检测系统自动抓拍存档告警。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码)。
AI 科技评论消息,11月15日-16日,“全球AI+智适应教育峰会”在北京嘉里中心大酒店盛大开幕,峰会由雷锋网联合乂学教育松鼠AI,以及IEEE(美国电气电子工程师学会)教育工程和自适应教育标准工作组共同举办,汇聚国内外顶尖阵容。
本文简要介绍了基于强化学习的码率自适应算法,在实践预研验证和分析的基础上,将该AI算法模型应用于实际项目。
基于图块的流媒体和超分辨率是用于提高沉浸式视频流的带宽效率的两种代表性技术。前者允许通过将视频分割成多个独立可解码的图块来选择性下载用户视口中的内容。后者利用客户端计算,使用先进的神经网络模型将接收到的视频重建为更高质量。基于图块的流媒体和 SR 的无缝集成是一项具有挑战性的任务,并且整体流媒体适应方案仍未得到研究
视频监控边缘分析盒通过计算机视觉深度学习+边缘计算视频监控分析技术,共同构成了基于边缘计算分析的视频图像识别技术。视频监控边缘分析盒通过对现场多路监控视频图像进行预处理,提高视频分析的速度。视频监控边缘分析盒可以应用于加油站智能视频分析、明厨亮灶视频监控智能分析、工地监控分析、城管视频监控分析、工厂视频监控智能分析、煤矿监控视频分析等场景。YOLO不会在输入图像中搜索可能包含对象的感兴趣区域,而是将图像分割成单元格,通常是19×19网格。每个细胞负责预测K个包围框。具有最大概率的类被选择并分配给特定的网格单元。类似的过程发生在图像中的所有网格单元格上。
之前写过一篇文章「简单了解InnoDB原理」,现在回过头看,其实里面只是把缓冲池(Buffer Pool),重做日志缓冲(Redo Log Buffer)、插入缓冲(Insert Buffer)和自适应哈希索引(Adaptive Hash Index)等概念简单的介绍了一下。
Spring Security的PasswordEncoder接口用于执行密码的单向转换,以便可以安全的存储密码。PasswordEncoder通常用于在认证时将用户提供的密码与存储的密码的比较。
领取专属 10元无门槛券
手把手带您无忧上云