首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    阿姆达尔定律和古斯塔夫森定律摘要背景建议使用指南更多资源

    摘要 构建软件的并行版本可使应用在更短的时间内运行指定的数据集,在固定时间内运行多个数据集,或运行非线程软件禁止运行的大型数据集。 并行化的成功通常通过测量并行版本的加速(相对于串行版本)来进行量化。 除了上述比较之外,将并行版本加速与可能加速的上限进行比较也十分有用。 通过阿姆达尔定律和古斯塔夫森定律可以解决这一问题。 本文是“英特尔多线程应用开发指南”系列的一部分,该系列介绍了针对英特尔® 平台开发高效多线程应用的指导原则。 背景 应用运行的速度越快,用户等待结果所需的时间越短。 此外,执行时间的缩短使

    06

    算法、应用与计算平台,讯飞百度阿里360的深度学习经

    当前人工智能领域最热门的技术,无疑是大数据+深度学习。实验环境下,深度学习的性能在语音识别、图象分类和检索、人脸识别、文字识别以及智能交通等领域,都大幅超过了传统的方法。但从商业化的角度来看,深度学习的应用才刚刚开始,挑战依然巨大。深度学习如何才能有用、好用,依然困扰许多企业和开发者。在9月24日下午的2015高性能计算用户大会 (HPCUF2015)深度学习分论坛上,来自 工业界和学术界的六位专家分享了深度学习技术在智能语音、搜索、广告、视觉分析、流量识别等不同领域的应用,以及为如何构建高性能计算平台来支

    04

    突破极限!腾讯云高性能计算助力实现超大体系平面波精度第一性原理计算

    近日,腾讯量子实验室、腾讯云高性能计算产品团队、北京龙讯旷腾科技有限公司和盐城工学院石林教授团队联合攻关,成功实现了百万硅原子超大规模体系的平面波精度第一性原理计算。该项工作由腾讯量子实验室牵头,基于龙讯旷腾公司的线性标度三维分块算法(LS3DF)以及腾讯云高性能计算集群产品完成。 一直以来,第一性原理计算作为研究材料物化性质的重要手段,对于新材料的发展具有重要意义。第一性原理计算从量子理论的基本原理出发,结合高性能计算系统的强大算力,通过数值迭代方法获取材料的物理或化学性质,为理解材料的性质、预测材

    06

    加速2-3倍,哈工大|提出多模态大模型自适应剪枝算法:SmartTrim

    基于 Transformer 结构的视觉语言大模型(VLM)在各种下游的视觉语言任务上取得了巨大成功,但由于其较长的输入序列和较多的参数,导致其相应的计算开销地提升,阻碍了在实际环境中进一步部署。为了追求更为高效的推理速度,前人提出了一些针对 VLM 的加速方法,包括剪枝和蒸馏等,但是现有的这些方法大都采用静态架构,其针对不同输入实例采用同样的计算图进行推理,忽略了不同实例之间具有不同计算复杂性的事实:针对复杂的跨模态交互实例,自然需要更多计算才能完全理解图像和相关问题的复杂细节;相反,简单的实例则可以用更少的计算量解决。这也导致较高加速比下的 VLM 的性能严重下降。

    01

    COLING24|自适应剪枝让多模态大模型加速2-3倍,哈工大等推出SmartTrim

    基于 Transformer 结构的视觉语言大模型(VLM)在各种下游的视觉语言任务上取得了巨大成功,但由于其较长的输入序列和较多的参数,导致其相应的计算开销地提升,阻碍了在实际环境中进一步部署。为了追求更为高效的推理速度,前人提出了一些针对 VLM 的加速方法,包括剪枝和蒸馏等,但是现有的这些方法大都采用静态架构,其针对不同输入实例采用同样的计算图进行推理,忽略了不同实例之间具有不同计算复杂性的事实:针对复杂的跨模态交互实例,自然需要更多计算才能完全理解图像和相关问题的复杂细节;相反,简单的实例则可以用更少的计算量解决。这也导致较高加速比下的 VLM 的性能严重下降。

    01
    领券