首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

经典的星号金字塔练习,带有扭曲

经典的星号金字塔练习是一种常见的编程练习,通过使用循环和条件语句来打印出一种金字塔形状的图案。这个练习可以帮助开发者熟悉和巩固编程基础知识,特别是对于循环和条件语句的理解和运用。

在这个练习中,我们可以使用任何编程语言来实现。下面是一个示例的Python代码:

代码语言:txt
复制
def print_pyramid(rows):
    for i in range(rows):
        for j in range(rows - i - 1):
            print(" ", end="")
        for j in range(i + 1):
            print("* ", end="")
        print()

# 调用函数打印出5行的金字塔
print_pyramid(5)

这段代码会输出以下金字塔形状的图案:

代码语言:txt
复制
    *
   * *
  * * *
 * * * *
* * * * *

这个练习可以帮助开发者锻炼编程思维和逻辑能力,同时也可以加深对循环和条件语句的理解。它在学习编程的早期阶段非常有用,但在实际的软件开发中并不常见。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云函数(Serverless):https://cloud.tencent.com/product/scf
  • 腾讯云容器服务(TKE):https://cloud.tencent.com/product/tke
  • 腾讯云数据库(TencentDB):https://cloud.tencent.com/product/cdb
  • 腾讯云CDN加速(CDN):https://cloud.tencent.com/product/cdn
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云物联网(IoT):https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发(移动开发):https://cloud.tencent.com/product/mobdev
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云区块链(BCS):https://cloud.tencent.com/product/bcs
  • 腾讯云虚拟专用网络(VPC):https://cloud.tencent.com/product/vpc
  • 腾讯云安全产品(安全):https://cloud.tencent.com/product/ss
  • 腾讯云视频处理(视频处理):https://cloud.tencent.com/product/vod
  • 腾讯云音视频通信(实时音视频):https://cloud.tencent.com/product/trtc
  • 腾讯云云原生应用引擎(CloudBase):https://cloud.tencent.com/product/tcb
  • 腾讯云元宇宙(Metaverse):https://cloud.tencent.com/product/metaverse

以上是腾讯云提供的一些相关产品,可以根据具体需求选择适合的产品来支持云计算和开发工作。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    现有的深度卷积神经网络(CNNs)需要一个固定大小的输入图像(如224×224)。这一要求是“人为的”,可能会降低对任意大小/尺度的图像或子图像的识别精度。在这项工作中,我们为网络配备了另一种池化策略,“空间金字塔池”,以消除上述要求。这种新的网络结构称为SPP-net,可以生成固定长度的表示,而不受图像大小/比例的影响。金字塔池对物体变形也有很强的鲁棒性。基于这些优点,SPP-net一般应改进所有基于cnn的图像分类方法。在ImageNet 2012数据集中,我们证明了SPP-net提高了各种CNN架构的准确性,尽管它们的设计不同。在Pascal VOC 2007和Caltech101数据集中,SPP-net实现了最先进的分类结果使用单一的全图像表示和没有微调。在目标检测中,spp网络的能力也很重要。利用SPP-net算法,只对整个图像进行一次特征映射计算,然后将特征集合到任意区域(子图像),生成固定长度的表示形式,用于训练检测器。该方法避免了卷积特征的重复计算。在处理测试图像时,我们的方法比R-CNN方法快24-102×,而在Pascal VOC 2007上达到了更好或相近的精度。在2014年的ImageNet Large Scale Visual Recognition Challenge (ILSVRC)中,我们的方法在所有38个团队中目标检测排名第二,图像分类排名第三。本文还介绍了本次比赛的改进情况。

    02

    PNEN:金字塔结构与Non-local非局部结构联合增强,提升low-level图像处理任务性能

    现在,用于low-level图像处理任务的神经网络通常是通过堆叠卷积层来实现的,每个卷积层仅包含来自一个小范围的上下文信息。随着更多卷积层的堆叠,卷积神经网络可以探索更多的上下文特征。但是,要充分利用远距离依赖关系较困难并且需要较多的计算量。由此,本文提出了一种新颖的non-local模块:金字塔non-local模块,以建立每个像素与所有剩余像素之间的连接。所提出的模块能够有效利用不同尺度的低层特征之间的成对依赖性。具体而言,首先通过学习由具有全分辨率的查询特征图和具有缩减分辨率的参考特征图所构成的金字塔结构来捕获多尺度相关性,然后利用多尺度参考特征的相关性来增强像素级特征表示。整个计算过程在同时考虑了内存消耗和计算成本。基于所提出的模块,本文还设计了一个金字塔non-local增强网络用于图像恢复任务中边缘保留的图像平滑处理,在比较三种经典的图像平滑算法中达到了最先进的性能。另外,可以将金字塔non-local模块直接合并到卷积神经网络中,以进行其他图像恢复任务,并可以将其集成到用于图像去噪和单图像超分辨率的现有方法中,以实现性能的持续改善。

    02

    SPPNet(2015)

    RCNN首次将卷积操作引入检测领域用于提取特征,然而现有的深度卷积网络需要输入固定尺寸的图片,这个需求可能会导致对于任意scale/size的图片的识别精确度下降。【深度卷积神经网络由卷积层和全连接层组成,卷积层对于任意大小的图片都可以进行卷积运算提取特征,输出任意大小的特征映射,而全连接层由于本身的性质需要输入固定大小的特征尺度,所以固定尺寸的需求来自于FC层,即使对输入图片进行裁剪、扭曲等变换,调整到统一的size,也会导致原图有不同程度失真、识别精度受到影响】SPPNet提出了**“空间金字塔池化”**消除这种需求,不管图像大小是多大,在整张图片上只需要计算一次,就可以得到整幅图像的特征图,经过池化都会输出一个固定长度的表征。

    02

    Feature Selective Anchor-Free Module for Single-Shot Object Detection(文献阅读)

    目标的多尺度变化在目标检测中是一个很重要的问题,利用特征层多尺度(或anchor多尺度)是一种有效的解决方案。Anchor box用于将所有可能的Instance box离散为有限数量的具有预先定义的位置、尺度和纵横比的box。Instance box和Anchor box基于IOU重叠率来匹配。当这种方法集成到特征金字塔的时候,大的anchor通常和上部的特征相映射,小的anchor通常和下部的特征相映射,如下图所示。这是基于启发式的,即上层特征图有更多的语义信息适合于检测大的目标,而下层特征图有更多的细粒度细节适合于检测小目标。然而,这种设计有两个局限性:1)启发式引导的特征选择;2)基于覆盖锚取样。在训练过程中,每个实例总是根据IoU重叠匹配到最近的锚盒。而锚框则通过人类定义的规则(如框的大小)与特定级别的功能映射相关联。因此,为每个实例选择的特性级别完全基于自组织启发式。例如,一个汽车实例大小50×50像素和另一个类似的汽车实例规模60×60像素可能分配到两个不同的特征层,而另一个40×40像素大小的实例可能被分配到和50x50相同的特征层,如下图所示。

    02

    又改YOLO | 项目如何改进YOLOv5?这篇告诉你如何修改让检测更快、更稳!!!

    交通标志检测对于无人驾驶系统来说是一项具有挑战性的任务,尤其是多尺度目标检测和检测的实时性问题。在交通标志检测过程中,目标的规模变化很大,会对检测精度产生一定的影响。特征金字塔是解决这一问题的常用方法,但它可能会破坏交通标志在不同尺度上的特征一致性。而且,在实际应用中,普通方法难以在保证实时检测的同时提高多尺度交通标志的检测精度。 本文提出了一种改进的特征金字塔模型AF-FPN,该模型利用自适应注意模块(adaptive attention module, AAM)和特征增强模块(feature enhancement module, FEM)来减少特征图生成过程中的信息丢失,进而提高特征金字塔的表示能力。将YOLOv5中原有的特征金字塔网络替换为AF-FPN,在保证实时检测的前提下,提高了YOLOv5网络对多尺度目标的检测性能。 此外,提出了一种新的自动学习数据增强方法,以丰富数据集,提高模型的鲁棒性,使其更适合于实际场景。在100K (TT100K)数据集上的大量实验结果表明,与几种先进方法相比,本文方法的有效性和优越性得到了验证。

    02

    Feature Selective Anchor-Free Module for Single-Shot Object Detection

    提出了一种简单有效的单阶段目标检测模块——特征选择无锚定(FSAF)模块。它可以插入到具有特征金字塔结构的单阶段检测器中。FSAF模块解决了传统基于锚点检测的两个局限性:1)启发式引导的特征选择;2)基于覆盖锚取样。FSAF模块的总体思想是将在线特征选择应用于多水平无锚分支的训练。具体来说,一个无锚的分支被附加到特征金字塔的每一层,允许在任意一层以无锚的方式进行盒编码和解码。在训练过程中,我们动态地将每个实例分配到最合适的特性级别。在推理时,FSAF模块可以通过并行输出预测与基于锚的分支联合工作。我们用无锚分支的简单实现和在线特性选择策略来实例化这个概念。在COCO检测轨道上的实验结果表明,我们的FSAF模块性能优于基于锚固的同类模块,而且速度更快。当与基于锚点的分支联合工作时,FSAF模块在各种设置下显著地改进了基线视网膜网,同时引入了几乎自由的推理开销。由此产生的最佳模型可以实现最先进的44.6%的映射,超过现有的COCO单单阶段检测器。

    02

    Spatial Attention Pyramid Network for Unsupervised Domain Adaptation

    无监督域适配在各种计算机视觉任务重很关键,比如目标检测、实例分割和语义分割。目的是缓解由于域漂移导致的性能下降问题。大多数之前的方法采用对抗学习依赖源域和目标域之间的单模式分布,导致在多种场景中的结果并不理想。为此,在本文中,我们设计了一个新的空口岸注意力金字塔网络来进行无监督域适配。特别的,我们首先构建了空间金字塔表示来获得目标在不同尺度的内容信息。以任务指定的信息为引导,在每个尺度上,我们组合了密集的全局结构表示和局部纹理模式,有效的使用了空间注意力截止。采用这种方式,网络被强迫关注内容信息由区别力的地方来进行域适配。我们在各种由挑战性的数据集上进行了昂贵的实验,对目标检测、实例分割和语义分割进行了域适配,这证明了我们的方法比最佳的方法有了很大的提升。

    03

    SPPNet总结

    RCNN使用CNN作为特征提取器,首次使得目标检测跨入深度学习的阶段。但是在RCNN中,因为全连接层的神经元个数是固定的(权重矩阵的维数是固定的),所以采取对于每一个区域候选都需要首先将图片放缩到固定尺寸(227×227),然后为每个区域候选提取CNN特征的方案。这里存在两个瓶颈,第一重复为每个region proposal提取特征是及其费时的,Selective Search对于每幅图片产生2k左右个region proposal,也就是意味着一幅图片需要经过2k次完整的CNN计算得到最终的结果。第二对于所有的region proposal放缩到固定尺寸会导致我们不期望看到的几何形变,而且由于速度瓶颈的存在,不可能采用多尺度或者是大量的数据增强去训练模型,这就导致它的性能必然较差。

    02
    领券