首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

线性回归中的多重共线性与岭回归

上式中有解,即能够得到最后一步的前提条件是 存在逆矩阵,而逆矩阵存在的充分必要条件是特征矩阵不存在多重共线性。...本文将详细介绍线性回归中多重共线性问题,以及一种线性回归的缩减(shrinkage)方法 ----岭回归(Ridge Regression),并对其进行了Python实现 多重共线性 多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确...由此得到,逆矩阵存在的充分必要条件是:矩阵的行列式不能为0。 即 存在逆矩阵的充要条件为 不能为0。这是使用最小二乘法来求解线性回归的核心条件之一。...矩阵满秩的充要条件 精确相关关系 即完全相关,矩阵两行之间或两列之间存在完全线性关系,这种精确相关关系会使得矩阵的行列式为0,则矩阵的逆矩阵不存在。...正常值 由此可见,一个矩阵如果要满秩,则要求矩阵中每个向量之间不能存在多重共线性,这也构成了线性回归算法对于特征矩阵的要求。

2.2K10

多分类任务的混淆矩阵

来源: DeepHub IMBA本文约1000字,建议阅读5分钟本文讨论了如何在多分类中使用混淆矩阵评估模型的性能。 什么是混淆矩阵? 它显示了实际值和预测值之间的差异。...对于多分类来说,它是一个 N * N 矩阵,其中 n 是编号。输出列中的类别,也称为目标属性。一二分类任务中包含了 2 个类也就是一个 2*2 矩阵,一般情况下介绍混淆矩阵都会以二分类为例。...那么将得到一个 3*3 矩阵依此类推。通过上面描述我们知道,混淆矩阵的类将具有相同数量的行和列。...我们将使用一个 3 x 3 矩阵,我们将使用我将向您展示的技巧计算 TP、TN、FP、FN 值。这个技巧也可以应用于 4*4、5*5…N*N 矩阵。...考虑这个混淆矩阵在下图 1 中的数据集的输出列中具有 A、B、C 类。

78540
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    分类模型的评估指标 | 混淆矩阵(2)

    评估指标 01 总体分类精度 指针对每一个随机样本,所分类的结果与检验数据类型相一致的概率,也就是被正确分类的像元总和除以总像元数。放到混淆矩阵中就是对角线上的像元数总和除以总像元数目。...放到混淆矩阵中,就是分类器将整幅影像正确分类为A的像元数(对角线上A类的值)与真实情况下A的像元数(真实情况A的像元数总和)之比。...放到混淆矩阵中,是分类器将整幅影像正确分类为A的像元数和(对角线上A类的值)与分类器分出的所有A类像元数(预测值为A的像元数总和)之比。...04 错分误差 指对于分类结果中的某种类型,与参考图像类型不一致的概率。放到混淆矩阵中,就是被分类器分为A类的像元中,分类出错的像元数所占的比率。...我们也就不难发现,错分误差+用户精度=1 05 漏分误差 指对于参考图像上的某种类型,被分类器分为其他类别的概率。放到混淆矩阵中就是真实情况为A类的像元数中有多少像元数被分类器分为了别的类别。

    2.9K30

    分类模型的评估指标 | 混淆矩阵(1)

    而不是像小编大一时,面对这些专业性极强的东西两眼一抹黑,学习的很吃力;此外,基础是延伸和扩展的前提,基础的东西如果掌握的不牢靠,那么在前沿事物的钻研过程中也不会取得更大的建树。...分类模型的评估指标有很多,今天小编给大家准备的是混淆矩阵。 简介 首先我们来解释一下什么是分类模型的评估指标。...其有两种表现形式:定量指标和图表指标;定量指标即以具体数值来表示分类质量;图表指标即以图表的形式来表示分类质量,以达到增强可视化评估的效果。 我们今天介绍的混淆矩阵就是一个图表形式的指标。...由以上内容可以获得结论:对于一款分类模型,TP值与TN值的数量越多,FP值与FN值的数量越少,模型的分类精度就越高。 02 样本二级指标 混淆矩阵统计的是样本在各个一级指标的数量。...特异度:TN/(TN+FP)=53/(53+20)≈73% 3 ---三级指标 F1 Score=2PR/(P+R)=(2*0.5*0.74)/(0.5+0.74) ≈0.6 以上就是在机器学习领域中的混淆矩阵及它所引申出的几个评估指标

    84550

    机器学习入门 6-3 线性回归中的梯度下降法

    本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍在线性回归中使用梯度下降法。 一 线性回归中的梯度下降法 前几小节为了更好的介绍梯度下降法的过程,我们将损失函数定义成二次曲线的形式。...在这一小节将梯度下降法真正的应用在线性回归中。 ? 此时将梯度下降法应用于线性回归中,相应的损失函数变成了真实值与预测值之间差值的平方之和,而参数不再是仅仅是一个theta而是一个向量θ。...对于简单线性回归此时的θ是包含两个参数的向量(其中一个是截距,另一个是样本唯一特征的系数); 而对于样本中拥有n个特征的多元线性回归问题来说,此时的θ是包含(n+1)个参数的向量(其中一个是截距,另外n...二 线性回归中梯度下降法的公式推导 前几个小节介绍的线性回归损失函数如下所示,此时使用样本中有n个特征的多元线性回归问题为例,当然简单线性回归也是一样的。 ?...在一些资料看到,在线性回归中使用梯度下降法要优化的目标函数在MSE基础上除以2,如果损失函数这样取的话,就会和对损失函数J求导中平方拿出来的2约掉,其实就相当于J(θ)的梯度前的系数变成1/m。

    99420

    混淆矩阵及confusion_matrix函数的使用

    1.混淆矩阵 混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。...这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class) 下图是混淆矩阵的一个例子 ?...其中灰色部分是真实分类和预测分类结果相一致的,绿色部分是真实分类和预测分类不一致的,即分类错误的。...2.confusion_matrix函数的使用 官方文档中给出的用法是 sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight...=None) y_true: 是样本真实分类结果,y_pred: 是样本预测分类结果 labels:是所给出的类别,通过这个可对类别进行选择 sample_weight : 样本权重 实现例子:

    2.3K20

    线性回归中的L1与L2正则化

    过于复杂的模型就是我们所说的“过拟合”,它们在训练数据上表现很好,但在看不见的测试数据上却表现不佳。 有一种方法可以对损失函数的过拟合进行调整,那就是惩罚。...通过惩罚或“正则化”损失函数中的大系数,我们使一些(或所有)系数变小,从而使模型对数据中的噪声不敏感。 在回归中使用的两种流行的正则化形式是L1又名Lasso回归,和L2又名Ridge回归。...在线性回归中我们使用普通最小二乘(OLS)是用于拟合数据的:我们对残差(实际值与预测值之间的差异)进行平方,以得到均方误差(MSE)。最小的平方误差,或最小的平方,是最适合的模型。 ?...让我们来看看简单线性回归的成本函数: ? 对于多元线性回归,成本函数应该是这样的,其中?是预测因子或变量的数量。 ? 因此,随着预测器(?)数量的增加,模型的复杂性也会增加。...这将降低模型的复杂性,有助于防止过拟合,可能消除变量,甚至减少数据中的多重共线性。 L2 -岭回归 L2或岭回归,将?惩罚项添加到系数大小的平方?。?是一个超参数,这意味着它的值是自由定义的。

    92210

    CNN中的混淆矩阵 | PyTorch系列(二十三)

    然后,我们会看到如何使用这个预测张量,以及每个样本的标签,来创建一个混淆矩阵。这个混淆矩阵将允许我们查看我们的网络中哪些类别相互混淆。...混淆矩阵要求 要为整个数据集创建一个混淆矩阵,我们需要一个与训练集长度相同的一维预测张量。...> len(train_set.targets) 60000 一个混淆矩阵将告诉我们模型在哪里被混淆了。更具体地说,混淆矩阵将显示模型正确预测的类别和模型不正确预测的类别。...建立混淆矩阵 我们构建混淆矩阵的任务是将预测值的数量与真实值(目标)进行比较。 这将创建一个充当热图的矩阵,告诉我们预测值相对于真实值的下降位置。...解释混淆矩阵 混淆矩阵具有三个轴: 预测标签(类) 真实标签 热图值(彩色) 预测标签和真实标签向我们显示了我们正在处理的预测类。

    5.4K20

    python—结巴分词的原理理解,Hmm中的转移概率矩阵和混淆矩阵。

    结巴分词的过程: jieba分词的python 代码 结巴分词的准备工作 开发者首先根据大量的人民日报训练了得到了字典库、和Hmm中的转移概率矩阵和混淆矩阵。 1....但是现在就不会了,只要把“中国人民”和“中国人民银行”之间的节点搜索一遍就行了,大大的节省了时间。有句话叫以空间换时间,最适合用来表达这个意思。 2....给定待分词的句子, 使用正则获取连续的 中文字符和英文字符, 切分成 短语列表, 对每个短语使用DAG(查字典)和动态规划, 得到最大概率路径, 对DAG中那些没有在字典中查到的字, 组合成一个新的片段短语..., 使用HMM模型进行分词, 也就是作者说的识别新词, 即识别字典外的新词....这里采用动态规划的最优化搜索。

    1.6K50

    机器学习入门 6-4 实现线性回归中的梯度下降法

    本系列是《玩转机器学习教程》一个整理的视频笔记。本小节主要介绍如何在线性回归中使用梯度下降法以及将梯度下降法封装在我们自己创建的线性回归类中。...一 线性回归中使用梯度下降法 首先创建一些拥有线性关系的样本,然后通过梯度下降法求解使得MSE损失函数值最小的参数,即为线性回归模型的截距和样本中相应特征的系数。 ? ? ? ? ? ?...二 将梯度下降法进行封装 接下来将梯度下降法封装在前面创建的LinearRegression线性回归类中,在LinearRegression类中创建一个名为"fit_gd"的函数: ?...接下来就是封装在LinearRegression类中的"fit_gd"函数: ? ? ? ? 接下来就可以在jupyter中调用我们封装的梯度下降法来求解线性回归模型: ?...这一小节我们使用自己构造的数据进行试验,并且在计算梯度下降法的时候并没有使用向量化的方式提高效率。因此在下一小节中,将在真实的数据上使用向量化的梯度下降法来求解线性回归模型。

    39420

    非线性回归中的Levenberg-Marquardt算法理论和代码实现

    输入一堆点并找到“完全”匹配趋势的曲线是令人兴奋的。但这如何工作?为什么拟合直线与拟合奇怪形状的曲线并不相同。每个人都熟悉线性最小二乘法,但是,当我们尝试匹配的表达式不是线性时,会发生什么?...提出问题 在某些情况下,线性回归是不够的。有时需要将一系列数据调整为非线性表达式。在这些情况下,普通最小二乘对我们不起作用,我们需要求助于不同的方法。...雅可比行列式是一个矩阵,其中包含一个函数相对于每个参数的所有一阶偏导数。 记住,下标i代表一个特定的数据点。如果数据包含100个点那么雅可比矩阵就有100行3列因为我们有3个参数。...如果我们使用雅可比行列式的概念来重写最后找到的dS / da方程。我们将有: ? 注意我是如何用矩阵来表示这个方程的。我去掉了现在雅可比矩阵的和,剩余都用矩阵来写。...但是,了解所有这些计算的来源始终很重要。进行线性和非线性回归是可以在数据分析和机器学习中完成的许多其他事情的基础。

    1.9K20

    python—结巴分词的原理理解,Hmm中的转移概率矩阵和混淆矩阵。

    结巴分词的过程: jieba分词的python 代码 结巴分词的准备工作 开发者首先根据大量的人民日报训练了得到了字典库、和Hmm中的转移概率矩阵和混淆矩阵。 1....但是现在就不会了,只要把“中国人民”和“中国人民银行”之间的节点搜索一遍就行了,大大的节省了时间。有句话叫以空间换时间,最适合用来表达这个意思。 2....给定待分词的句子, 使用正则获取连续的 中文字符和英文字符, 切分成 短语列表, 对每个短语使用DAG(查字典)和动态规划, 得到最大概率路径, 对DAG中那些没有在字典中查到的字, 组合成一个新的片段短语..., 使用HMM模型进行分词, 也就是作者说的识别新词, 即识别字典外的新词....这里采用动态规划的最优化搜索。

    1.4K20

    线性代数投影矩阵的定义_线性代数a和线性代数b

    大家好,又见面了,我是你们的朋友全栈君。 About 投影矩阵   一个矩阵 A A A既可以表示一种线性变换,又可以是一个子空间(由基张开的),还可以是一组坐标,甚是神奇。...文章目录 About 投影矩阵 一维空间的投影矩阵 投影矩阵的多维推广 投影的物理意义 信号处理中的正交投影技术 一维空间的投影矩阵   查看上图, p p p是 b b b在 a a a上的投影...若 A A A各列线性无关则可逆。 P P P的性质 1....:把 A A A中的列向量看成 A A A的列空间中的基, x x x为坐标,则向量 b b b是否可用 A A A中的基线性表示,若出现以下情况:向量 b b b不在 A A A的列空间中,则上式无解...若干扰源已知,即 D D D已知,则干扰源可用以下投影矩阵对消,全空间-干扰子空间的投影矩阵。

    56920

    矩阵分析笔记(六)矩阵等价与线性映射的最简表示

    矩阵等价 矩阵A\cong B的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PAQ=B ---- 线性映射的最简表示 在指定了空间V_1与V_2的基之后,便可以求得线性映射\mathscr{A}...但是空间基是不唯一的,自然应该考虑以下两个问题: 线性映射在不同对基下的矩阵表示之间有什么关系? 对一个线性映射,能否选择一对基,使它的矩阵表示最简单(零多)?...,\beta^{'}_m是V_2的两组基,由\beta_j到\beta^{'}_j的过渡矩阵为Q。线性映射\mathscr{A}在基\alpha_1,\alpha_2,......,一定可以找到一对基,使得线性映射对应的矩阵最简单 ---- 线性变换 接下来的线性映射\mathscr{A}都是指线性空间V到V的映射,特称这样的\mathscr{A}为线性空间V的线性变换。...很明显加法和数乘都可以,乘法不行(维度不匹配) ---- 不同基下的矩阵关系 设\mathscr{A}为线性空间V上的线性变换,设\alpha_1,\alpha_2,...

    1.7K40

    线性代数精华3——矩阵的初等变换与矩阵的秩

    有了矩阵秩的概念之后,我们后续的很多内容介绍起来都方便了许多,它也是矩阵领域当中非常重要的概念之一。 线性方程组的解 我们理解了矩阵的秩的概念之后,我们现学现用,看看它在线性方程组上的应用。...假设当下有一个n元m个等式的方程组: ? 我们可以将它写成矩阵相乘的形式: ? ? 我们利用系数矩阵A和增广矩阵B=(A,b)的秩,可以和方便地看出线性方程组是否有解。...上面写出的解的形式即是线性方程组的通解。 齐次线性方程组 如果我们将上面的线性方程组的常数项都置为0,就称为齐次线性方程组,如下: ? 齐次方程组最大的特点就是当 ? 时一定有解,称为方程组的零解。...我们还通过增广矩阵来判断,写出来其实还是刚才一样的形式: ? 和非齐次线性方程组不同的是,我们可以断定 ? ,如此一来就不存在无解的情况。...线性方程组的解的公式和计算本身其实并不重要。因为在实际的算法领域,用到的也不多。

    1.8K10

    消灭事件回调,变成线性同步的代码风格

    在 C# 和 Javascript 语言下,讨论如何封装事件返回的回调 问题场景 比如有一个库中,有一个 send 方法,用于发送命令,然后需要等待返回值,但 send 方法本身没有返回值,而是通过另外的事件来获取返回值...伪代码如下: // 通过事件回调来接收命令执行结果foo.onDataReceive = (result) => { // receive result }// 发送命令foo.send("command...,在 C# 中使用的是 TaskCompletionSource 这个 API,Javascript 中使用的就是 Promise 尤其是 C# 中的这个 API,其实很简单,但是如果不知道,还真一时半会想不到特别优雅的方案...在 Javascript 中,Promise 的提出,作用之一就是为了解决回调地狱,所以这个方案在 Javascript 显得就很自然。...}); } }; sender.send(request, callback); }); },}; 好处 当然是让代码逻辑更清晰,将回调写法,变成线性执行

    8300

    机器学习入门 10-8 多分类问题中的混淆矩阵

    本小节主要介绍如何求解多分类问题中的指标,着重介绍多分类问题中的混淆矩阵,将混淆矩阵进行处理转换为error_matrix矩阵,并通过可视化的方式直观的观察分类算法错误分类的地方。...本小节来简单看一下如何利用前几个小节学习的指标来处理多分类问题,在前几个小节的二分类问题中介绍了一个非常重要的小工具混淆矩阵,由混淆矩阵推导出了很多重要的指标,因此最后着重介绍多分类问题中的混淆矩阵。...b 多分类问题中的混淆矩阵 这一小节的重点是介绍多分类问题中的混淆矩阵,不同于sklearn中的precision_score、recall_score和f1_score,sklearn中的混淆矩阵天然支持多分类问题...这里将混淆矩阵映射成灰度图像,因此传入plt.cm.gray; 调用plt.show()绘制混淆矩阵映射的灰度图像; 通过matplotlib将混淆矩阵映射成了灰度图像,在灰度图像上越亮的地方代表数值越大...矩阵的值等于混淆矩阵中的每一个元素值除以混淆矩阵每一个行的和,即cfm / row_sums; 我们并不关注那些完全预测正确的结果,所以使用fill_diagonal函数将error_matrix中对角线位置的值设置为

    5.5K40

    分类模型的性能评估——以SAS Logistic回归为例: 混淆矩阵

    本文从混淆矩阵(Confusion Matrix,或分类矩阵,Classification Matrix)开始,它最简单,而且是大多数指标的基础。...在SAS的Logistic回归中,默认按二分类取值的升序排列取第一个为positive,所以默认的就是求bad的概率。(若需要求good的概率,需要特别指定)。...good 0.06789 good good 0.61195 bad good 0.15306 good Confusion Matrix, 混淆矩阵...我们需要知道,这个模型到底预测对了多少,预测错了多少,混淆矩阵就把所有这些信息,都归到一个表里: 预测 1 0 实 1 d, True Positive c, False Negative c+...一些准备 说,混淆矩阵(Confusion Matrix)是我们永远值得信赖的朋友: 预测 1 0 实 1 d, True Positive c, False Negative c+d,

    2.5K50

    线性代数精华2——逆矩阵的推导过程

    上一讲当中我们复习了行列式的内容,行列式只是开胃小菜,线性代数的大头还是矩阵。 矩阵的定义很简单,就是若干个数按照顺序排列在一起的数表。...将B不要当做一个完整的矩阵,而当做是k个列向量的集合,代表一种线性变换。将一个n维的向量线性变换到k维空间的变换。...那么A和B矩阵相乘的结果,其实也就意味着A矩阵当中m个n维向量分别进行线性变换之后组合成的新矩阵。向量的数量没有变,还是m个,只不过维度从n变成了k,所以最终的结果是一个m*k的矩阵。...线性代数精华1——从行列式开始 我们列举出所有的代数余子式,将这些余子式组合成一个矩阵,这样的矩阵称为伴随矩阵。定义如下: ? 通过上面的定义,我们可以看出来,伴随矩阵也是一个n阶的方阵。...在我们介绍逆矩阵的计算方法之前,需要先明确,逆矩阵不等于矩阵转置。矩阵转置的操作是将一个矩阵行和列互换,在线性代数当中,矩阵A的转置记作AT,而A的逆矩阵记作A−1,看起来比较相似,很容易搞混。

    1.7K10

    StatQuest专辑汇总贴

    本系列主要是同StatQuest全视频的章节相同,分为:统计基础部分、线性回归、logistic回归、机器学习和高通量测序5个部分,其中还穿插了一些基于R语言实现算法的小章节。 1. 统计基础 ?...线性回归模型 ?...推送目录概览: 最小二乘法与线性回归 线性回归中的R方与R方显著性 线性回归的R实现与结果解读 线性回归的妙处:t检验与方差分析 设计矩阵(design matrices) 设计矩阵 in R 3.logistic...推送目录概览: 01 Logistic回归概览 02 Logistic回归中的系数解读 03 最大似然估计法拟合logistic回归曲线 04 Logistic回归:R2与P-value的计算 05...以下为本部分内容的概览: 01 机器学习简介 02 交叉验证法(cross validation) 03 混淆矩阵(confusion matrix) 04 ROC和AUC 05 pROC包绘制ROC

    99630
    领券