首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    综述 | 机器视觉表面缺陷检测

    中国是一个制造大国,每天都要生产大量的工业产品。用户和生产企业对产品质量的要求越来越高,除要求满足使用性能外,还要有良好的外观,即良好的表面质量。但是,在制造产品的过程中,表面缺陷的产生往往是不可避免的。不同产品的表面缺陷有着不同的定义和类型,一般而言表面缺陷是产品表面局部物理或化学性质不均匀的区域,如金属表面的划痕、斑点、孔洞,纸张表面的色差、压痕,玻璃等非金属表面的夹杂、破损、污点,等等。表面缺陷不仅影响产品的美观和舒适度,而且一般也会对其使用性能带来不良影响,所以生产企业对产品的表面缺陷检测非常重视,以便及时发现,从而有效控制产品质量,还可以根据检测结果分析生产工艺中存在的某些问题,从而杜绝或减少缺陷品的产生,同时防止潜在的贸易纠份,维护企业荣誉。

    03

    机器视觉表面缺陷检测综述

    中国是一个制造大国,每天都要生产大量的工业产品。用户和生产企业对产品质量的要求越来越高,除要求满足使用性能外,还要有良好的外观,即良好的表面质量。但是,在制造产品的过程中,表面缺陷的产生往往是不可避免的。不同产品的表面缺陷有着不同的定义和类型,一般而言表面缺陷是产品表面局部物理或化学性质不均匀的区域,如金属表面的划痕、斑点、孔洞,纸张表面的色差、压痕,玻璃等非金属表面的夹杂、破损、污点,等等。表面缺陷不仅影响产品的美观和舒适度,而且一般也会对其使用性能带来不良影响,所以生产企业对产品的表面缺陷检测非常重视,以便及时发现,从而有效控制产品质量,还可以根据检测结果分析生产工艺中存在的某些问题,从而杜绝或减少缺陷品的产生,同时防止潜在的贸易纠份,维护企业荣誉。

    02

    计算机视觉最新进展概览(2021年8月8日到2021年8月14日)

    这项工作解决了雾天基于激光雷达的三维目标检测的挑战性任务。在这种情况下收集和注释数据是非常费时费力的。在本文中,我们通过将物理上精确的雾模拟到晴好天气场景中来解决这个问题,从而可以将晴好天气中捕获的大量现有真实数据集重新用于我们的任务。我们的贡献有两个方面:1)我们开发了一种适用于任何激光雷达数据集的物理上有效的雾模拟方法。这释放了大规模雾天训练数据的获取,无需额外成本。这些部分合成的数据可用于提高几种感知方法的鲁棒性,例如对真实雾天数据的3D目标检测和跟踪或同时定位和映射。2)通过使用几种最先进的检测方法的大量实验,我们表明,我们的雾模拟可以显著提高雾存在时的3D目标检测性能。因此,我们第一个在透视雾数据集上提供强有力的3D目标检测基线。

    03
    领券