首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

人脸识别到底怎么

参考文章: [银行VIP客户人脸识别系统解决方案](http://cctv.cps.com.cn/article/201611/929071.html) ? 图9.1 会员权益 ?...相关文章:[人脸识别客流量人流量人数分析统计系统](http://china.coovee.net/business1/detail/39634475.html) ? 图11 商场流量统计 12....目前,龙缸景区北门、南门以及云端廊桥、大安洞等景点都已安装人脸识别系统。记者在现场看到,原来检票、比对指纹的程序已经简化成快捷刷脸。 相关文章: [1秒刷脸入园!...龙缸景区首采人脸识别检票系统](http://cq.qq.com/a/20180521/011160.htm) ?...图13 景区出入园人脸检票 14.人脸识别对比(娱乐类) 主要通过人脸识别后的特征,和其他人脸比对,比如娱乐类,父子,母女,好友等比对,用来判别识别率,或者可以更精细说明鼻子比较像,眼睛比较像等等。。。

4K11
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人脸识别系统FaceNet原理

    概述 近年来,随着深度学习在CV领域的广泛应用,人脸识别领域也得到了巨大的发展。...Google在2015年提出了人脸识别系统FaceNet[1],可以直接将人脸图像映射到欧式空间中,空间中的距离直接代表了人脸的相似度。...采用端对端对人脸图像直接进行学习,学习从图像到欧式空间的编码方法,然后基于这个编码再做人脸识别人脸验证和人脸聚类等。...Triplet Loss Triplet Loss是FaceNet系统的另一大特点,对于认脸图像 ,通过Triplet Loss可以使得映射后的向量表示 在欧式空间中可以度量,Triplet Loss...总结 在FaceNet系统中,通过端到端的训练方式将人脸图像映射到同一个欧式空间中,并通过设计Triplet Loss,使得同一人脸在欧氏空间中的距离较近,而不同人脸在欧式空间中的距离较远。

    6.1K20

    Python人脸识别签到考勤系统

    前言 本项目为IOT实验室人员签到考勤设计,系统实现功能: 人员人脸识别并完成签到/签退 考勤时间计算 保存考勤数据为CSV格式(Excel表格) PS:本系统2D人脸识别,节约了繁琐的人脸识别训练部分...## 人脸识别部分 faces_cur_frame = face_recognition.face_locations(frame) encodes_cur_frame...= 'unknown'): ##签到判断:是否为已经识别人脸 buttonReply = QMessageBox.question...print('签退操作失败') self.ClockOutButton.setEnabled(True) 项目目录结构 后记 因为本系统没有进行人脸训练建立模型...,系统识别率较高,安全性较低 系统优化较差,摄像头捕捉帧数较低(8-9),后台占有高,CPU利用率较高 数据保存CSV格式,安全性较低 正式版改进 加入TensorFlow深度学习,提高系统人脸识别安全性与准确性

    1.9K30

    Python人脸识别签到考勤系统

    前言 本项目为IOT实验室人员签到考勤设计,系统实现功能: 人员人脸识别并完成签到/签退 考勤时间计算 保存考勤数据为CSV格式(Excel表格) PS:本系统2D人脸识别,节约了繁琐的人脸识别训练部分...## 人脸识别部分 faces_cur_frame = face_recognition.face_locations(frame) encodes_cur_frame...= 'unknown'): ##签到判断:是否为已经识别人脸 buttonReply = QMessageBox.question...print('签退操作失败') self.ClockOutButton.setEnabled(True) 项目目录结构 后记 因为本系统没有进行人脸训练建立模型...,系统识别率较高,安全性较低 系统优化较差,摄像头捕捉帧数较低(8-9),后台占有高,CPU利用率较高 数据保存CSV格式,安全性较低 正式版改进 加入TensorFlow深度学习,提高系统人脸识别安全性与准确性

    2.2K20

    实时人脸识别系统

    来源:IBC2021 主讲人:Yuka Kaburagi 内容整理:张雨虹 本文提出了一种用于直播的的人脸识别系统——人脸检测器。...人脸检测器是一种实时人脸识别系统,用于识别人脸,并在输入视频流中显示人物姓名。 该系统基于 Python 开发,可以识别从不同角度拍摄的人。系统对每个人进行人脸识别处理并将结果显示在屏幕上。...对于广播业务而言,准确率比识别率更重要。因此我们选择优先考虑准确率。我们系统识别率和准确率的实验结果如下图所示,系统没有过度检测任何受试者。...识别率和准确率 易于操作:即只需要一台笔记本或台式机,在没有网络连接的情况下,人脸检测器仍能正常工作。其他面部识别系统需要每个人的大量图像来进行模型训练,而人脸检测器只需要一张样本图像。...实时人脸识别的实际应用过程可以分为以下几步:首先选择好参考人物并输入视频流;在检测到人物后,计算其和参考人物面部范围的相似度;当相似度高于指定阈值时,将当前参考人物的姓名插入到视频流中。

    3.6K10

    人脸识别安全帽识别系统

    人脸识别安全帽识别系统对于高危自然环境的工作中,对工作人员及是否佩戴安全帽开展全自动监管,工作人员超出规范化管理中要求的限制,系统会全自动警报。人工智能算法盒子可以在风险地区和关键监管地区开展识别。...人脸识别安全帽识别系统根据图象识别技术识别作业人员的安全帽的配戴状况。当工作人员总数较多时,可以对员工的重复和一部分屏蔽掉。工作人员的各种姿势和视角有很高的识别精确性。...人脸识别安全帽识别系统主要包含人脸识别、身份认证和人体认证;依据脸部特点测算二张脸的相似度,并全自动识别。保证每一个考勤管理工作人员的信息确实靠谱,防止冒名。

    2.1K30

    人脸检测与识别技术(怎么去创新?)

    不久,加州大学伯克利分校的研究人员透露,使用深度学习技术的机器人系统能够自己学会如何拧开瓶盖。...因为最近人脸检测与识别火热的进行着,本平台想进一步详细介绍关于人脸领域的相关知识与分析,让更多人的有进一步深入的熟知!其中我刚开始接触的时候,也是通过商汤合作的项目学习深入的人脸检测识别技术。...具体效果如下: 人脸检测与识别的趋势和分析(增强版)这篇推送已经清楚说明了传统的一些应用和出现的问题,现在我们要把这领域做得非常优秀,并且超越人类的极限,只能通过一一排除所有的困难,才可以实现超人类的检测与识别技术...我们都知道,现实生活无论是照片还是视频,其中的人脸都是在变的,通过镜头的远近,人脸的尺度大小一直在变化,这种尺度变化问题就会导致人脸检测识别精度的降低,那现在我们就要针对该问题去解决它。...那该怎么办??? 这就需要读者您自己慢慢去体会,怎么去处理这方面的问题,也希望通过本次简单的介绍和分析,可以给有帮助的您带来一些解决!

    2.3K60

    简单的Python人脸识别系统

    显示图片 cv2.imshow('window 1',img) # 5.暂停窗口 cv2.waitKey(0) # 6.关闭窗口 cv2.destroyAllWindows() 案例二 在图片上添加人脸识别...思路: 1.导入库 2.加载图片 3.加载人脸模型 4.调整图片灰度 5.检查人脸 6.标记人脸 7.创建窗口 8.显示图片 9.暂停窗口 10.关闭窗口 # 1.导入库 import cv2 #...') # 4.调整图片灰度:没必要识别颜色,灰度可以提高性能 gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) # 5.检查人脸 faces = face.detectMultiScale...(gray) # 6.标记人脸for (x,y,w,h) in faces: # 里面有4个参数 1.写图片 2.坐标原点 3.识别大小 4.颜色 5.线宽 cv2.rectangle...0xFF == ord('q'): break # 4.释放资源 capture.release() # 5.关闭窗口 cv2.destroyAllWindows() 案例四 摄像头识别人脸

    1.8K50

    基于 opencv 的人脸识别系统

    人脸检测就是判断待检测图像中是否存在人脸以及人脸在图片中的位置,人脸识别则是将检测到的人脸与已知的人脸库中的人脸进行比对,得出相似度信息。...本系统使用人脸类 harr 特征、Adaboost 算法进行人脸检测,采用 PCA(Principal Component Analysis)降维算法得到特征脸子空间,将在 PC 平台训练的人脸识别分类器预存到嵌入式目标平台...,最后结合最近邻匹配算法实现在线人脸识别,实际采集的图片测试结果表明该系统效果良好。...(四)人脸识别 特征提取是人脸识别的关键问题之一。PCA 是一种数据降维方法,它将数据维数高的样本用尽可能少的特征向量去描述,以达到压缩数据的目的 [9]。...:将待识别人脸投影到之前训练好的特征子空间; step6:计算待识别人脸与训练库中每张人脸的距离; step7:根据最小距离计算相似度并判断是否是样本库中的人,结束。

    2K20

    人脸识别登录认证:加强系统认证

    人脸库 一、创作动机 早在很久之前,公司同事已经实现了在网站的登陆模块加上人脸识别认证登陆功能,自己也就萌生了动手在自己的系统中加上这样的功能,通过不断的学习和搜所资料,发现百度已经提供了这样一个接口供我们去调用...,帮助我们快速在自己的系统中集成人脸识别的功能,而且这个接口可以无限次调用。...二、需求介绍 在系统中,我们不用输入任何账号和密码,直接通过人脸识别,实现登陆。...三、使用的接口介绍 在本次演示中,主要涉及到人脸识别模块的两个接口(人脸注册,人脸搜索) 人脸注册接口说明: 用于从人脸库中新增用户,可以设定多个用户所在组,及组用户的人脸图片...用于从人脸库中新增用户,可以设定多个用户所在组,及组用户的人脸图片, 典型应用场景:构建您的人脸库,如会员人脸注册,已有用户补全人脸信息等。

    8.4K30

    人脸识别系统如何建模_3dmax人脸建模

    本发明涉及生物特征识别,特别是涉及人脸识别中的特征建模方法。...背景技术: 人脸识别技术一般包括四个组成部分,分别为人脸图像采集、人脸图像预处理、人脸图像特征提取以及匹配与识别,具体来说: 人脸图像采集及检测是指通过摄像镜头等视频图像采集装置采集包括有人脸的视频或图像数据...人脸识别过程受到很多因素的干扰,准确地提取人脸中合适的关键特征点是进行正确识别的关键。...图1为本申请中所述人脸识别中的特征建模方法的步骤示意图; 图2为本申请中所述人脸识别中的特征建模方法的又一步骤示意图。...应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围

    2K20

    基于tensorflow的人脸识别登陆系统

    概述 本项目基于tensorflow机器学习,实现web端人脸识别登陆,人脸注册。 提供手机端页面(face_login_app)和网页端页面(vue_element-admin)。...功能 软件架构 tensorflow 用于人脸识别的机器学习 vue web端开发 redis 保存token,因为方便失效 MongoDB 保存人脸已编码的数据和用户信息 flask 用于开发web...接口,和返回静态页面 face_recognition 人脸识别python库,可以从照片中识别人脸 使用 更新记录 下载文章文字内容到txt 下载文章图片 保存HTML文件,并将图片链接指向本地...生成模型,验证图片等 face_login_app 文件夹中保存移动端代码,使用weui+vue,build后的dist代码放入到APP的dist中 vue-element-admin 文件夹为网页边人脸识别登陆前端代码

    3K40

    独家 | 如何戏弄人脸识别系统

    本文通过对人脸识别系统的攻击揭示了该系统的脆弱性和漏洞所在,并对人脸识别系统在人类社会中的广泛使用的现状提出了建设性的意见与建议。...研究人员已经证明他们可以欺骗现代的人脸识别系统,使它辨别出一个根本不在那里的人。 来自网络安全公司McAfee的某小组针对一个与目前用于机场验证护照的系统相类似的面部识别系统发起攻击。...同时,他们使用人脸识别算法去检测CycleGAN生成的图像会被识别成谁。在生成了上百张图片后,CycleGAN终于生成了一张肉眼看起来像A,但是人脸识别系统识别成B的图像。 ?...尽管该研究对人脸识别系统的安全性提出了明确的担忧,但也有一些注意事项。首先,研究人员并没有进入机场真正用来识别乘客的系统,而是使用了一种最先进的、开源算法对其进行估计。...但是人脸识别系统和自动化护照管控在世界各地的机场中的使用率都逐渐升高,新冠疫情带来的转变和对于非接触式系统的需求也加速了这种趋势。

    2.1K30

    未戴安全帽人脸识别系统

    未戴安全帽人脸识别系统不仅可以对未佩戴安全帽的行为进行识别,还可以对人脸进行识别抓拍,可以充分满足日益增长的客户需求。   ...未戴安全帽人脸识别系统应运而生,不仅可以对未佩戴安全帽的行为进行告警,还可以对未佩戴安全帽的人脸进行识别、抓拍,方便管理人员对未按要求佩戴安全帽的工作人员进行管理。                         ...(2)系统会按照天、周、月的时间段方式(或用户自定义时间段)来统计报警类别、报警源,显示报警状态是否被处理,并根据以上信息系统会给出相应的报警趋势预测。   ...(4)多级用户权限管理机制,让拥有不同权限的用户能够在自己相应的权限范围使用相应的功能,增加了系统的安全性。

    2.4K50

    Python开发系统实战项目:人脸识别门禁监控系统

    face_locations 2.2.3 face_landmarks 2.2.4 face_encodings 2.2.5 compare_faces 2.2.6 获取摄像头的图像信息 3 实现人脸识别的监控系统...3.1 人脸识别监控系统 3.2 眨眼活体检测 1 人脸识别应用所涉及到的功能模块 摄像头调用 脸部图像识别和处理 活体检测 多线程的应用 定时器的调用 2 人脸识别的基本过程 人脸的 68 个基本特征点位置以及顺序...waitKey(1) & 0xFF == ord('q'): cv2.imwrite('out.jpg', frame) break cap.release() 3 实现人脸识别的监控系统...整理人脸识别监控系统主要功能: 打开摄像头读取图像 ok 与已知人物头像进行对比,识别哪些是已知人员,哪些是未知人员 ok 在摄像头图像上直接标注对比结果 ok 记录每次对比的结果,并将未知人员的图像进行保存...活体检测 3.1 人脸识别监控系统 # -*-coding:GBK -*- import face_recognition import os import cv2 from PIL import Image

    2.2K12

    Python+OpenCV人脸识别签到考勤系统

    前言 本项目为IOT实验室人员签到考勤设计,系统实现功能: 1.人员人脸识别并完成签到/签退 2.考勤时间计算 3.保存考勤数据为CSV格式(Excel表格) PS:本系统2D人脸识别,节约了繁琐的人脸识别训练部分...# 人脸识别部分 faces_cur_frame = face_recognition.face_locations(frame) encodes_cur_frame...= face_recognition.face_distance(encode_list_known, encodeFace) name = "unknown" #未知人脸识别为...= 'unknown'): #签到判断:是否为已经识别人脸 buttonReply = QMessageBox.question(...,系统识别率较高,安全性较低 系统优化较差,摄像头捕捉帧数较低(8-9),后台占有高,CPU利用率较高 数据保存CSV格式,安全性较低 正式版改进 1.加入TensorFlow深度学习,提高系统人脸识别安全性与准确性

    1.9K21
    领券