【问题描述】 稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。...【基本要求】 以三元组顺序表表示稀疏矩阵,实现两个矩阵相加、相减的运算。稀疏矩阵的输入形式采用三元组表示,而运算结果的矩阵则以通常的阵列形式列出。 ?...稀疏矩阵加减法例子 【Talk is cheap, show you the code】 #include // By Titan 2020-03-30 using namespace
对角矩阵的压缩存储 【数据结构】数组和字符串(二):特殊矩阵的压缩存储:对角矩阵——一维数组 b~c....稀疏矩阵的压缩存储——三元组表 【数据结构】数组和字符串(四):特殊矩阵的压缩存储:稀疏矩阵——三元组表 e....压缩稀疏行(Compressed Sparse Row,CSR)矩阵 压缩稀疏行(Compressed Sparse Row,CSR)是一种常用的稀疏矩阵存储格式。...CSR存储格式通过压缩非零元素的行指针和列索引,以及存储非零元素的值,来有效地表示稀疏矩阵。...CSR存储格式的主要优点是有效地压缩了稀疏矩阵的存储空间,只存储非零元素及其对应的行和列信息。此外,CSR格式还支持高效的稀疏矩阵向量乘法和稀疏矩阵乘法等操作。
【注】参考自: 稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB。...存储格式 相较于一般的矩阵存储格式,即保存矩阵所有元素,稀疏矩阵由于其高度的稀疏性,因此需要更高效的存储格式。...对比 3.1 优缺点概述 存储格式 优点 缺点 COO 灵活、简单 压缩、稀疏矩阵矢量乘积效率低 CSR 灵活、简单 稀疏矩阵矢量乘积效率低 ELL 稀疏矩阵矢量乘积效率高 压缩效率不稳定 DIA 稀疏矩阵矢量乘积效率高...压缩效率不稳定 COO 格式常用于从文件中进行稀疏矩阵的读写,而 CSR 格式常用于读入数据后进行稀疏矩阵的计算。...3.2 存储效率 CSR 格式在存储稀疏矩阵时非零元素平均使用的字节数最为稳定;DIA 格式存储稀疏矩阵时非零元素平均使用的字节数与矩阵类型关联较大,该格式更适合 Structured Mesh 结构的稀疏矩阵
说明: 稀疏矩阵是机器学习中经常遇到的一种矩阵形式,特别是当矩阵行列比较多的时候,本着“节约”原则,必须要对其进行压缩。本节即演示一种常用的压缩方法,并说明其他压缩方式。...但是,对于稀疏矩阵而言,因为存在大量的零元素,每个零元素都要存储和参与运算,这样会造成大量的冗余和浪费。...★矩阵压缩的基本原则: 不重复存储相同元素 不存储零元素 下面详细介绍一种压缩稀疏行(Compressed Sparse Row,CSR)的矩阵压缩方法。...从而实现了对原有稀疏矩阵的压缩。从图2-6-3中,能够更直观地了解上述压缩过程和效果。...对分块稀疏矩阵按行压缩 coo_matrix 坐标格式的稀疏矩阵 csc_matrix 压缩系数矩阵 csr_matrix 按行压缩 dia_matrix 压缩对角线为非零元素的稀疏矩阵 dok_matrix
对角矩阵的压缩存储 【数据结构】数组和字符串(二):特殊矩阵的压缩存储:对角矩阵——一维数组 b~c....三角、对称矩阵的压缩存储 【数据结构】数组和字符串(三):特殊矩阵的压缩存储:三角矩阵、对称矩阵——一维数组 d....稀疏矩阵的压缩存储——三元组表 【数据结构】数组和字符串(四):特殊矩阵的压缩存储:稀疏矩阵——三元组表 e....压缩稀疏行(Compressed Sparse Row,CSR)矩阵 【数据结构】数组和字符串(五):特殊矩阵的压缩存储:稀疏矩阵——压缩稀疏行(CSR) f....压缩稀疏列(Compressed Sparse Column,CSC)矩阵 压缩稀疏列(Compressed Sparse Column,CSC)以列为主要组织方式,将矩阵按列进行存储。
1、矩阵是很多科学与工程计算问题中研究的数学对象,如何存储矩阵的元,从而使矩阵的各种算法能有效地进行。 2、通常,用高级语言编制程序时,都是用二维数组来存储矩阵元。...3、有时为了节省存储空间,可以对这类矩阵进行压缩存储。所谓的压缩存储是指:为多个值相同的元只分配一个存储空间,对零元不分配空间。...4、假若值相同的元素或者零元素在矩阵中的分布有一定规律,则称此类矩阵为特殊矩阵;反之,称为稀疏矩阵。 5、假设以顺序存储结构来表示三元组表,则可得稀疏矩阵的一种压缩存储方式,我们称之为三元组顺序表。
在矩阵中,如果数值为0的元素数目远远多于非0元素的数目,并且非0元素分布无规律时,则称该矩阵为稀疏矩阵(sparse matrix);与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。...当一个矩阵中含有大量的0值时,可以将矩阵以稀疏矩阵的方式存储以解决资源。在R中,可以用Matrix这个包, 它可以将矩阵转化为稀疏矩阵。...#建立一个含大量0值的矩阵 M<-matrix(sample(c(0,0,1),size = 100,replace = T),10,10) class(M) M ?...#转化成稀疏矩阵,可以看到0变成了点 library(Matrix) sparseM= Matrix(M) class(sparseM) sparseM ?...#转成普通的矩阵 as.matrix(sparseM) ?
对角矩阵的压缩存储 【数据结构】数组和字符串(二):特殊矩阵的压缩存储:对角矩阵——一维数组 b~c....三角、对称矩阵的压缩存储 【数据结构】数组和字符串(三):特殊矩阵的压缩存储:三角矩阵、对称矩阵——一维数组 d....稀疏矩阵的压缩存储——三元组表 对于稀疏矩阵的压缩存储,由于非零元素的个数远小于零元素的个数,并且非零元素的分布没有规律,无法简单地利用一维数组和映射公式来实现压缩存储。...针对稀疏矩阵,通常采用特定的数据结构来进行压缩存储,以减少存储空间的占用。 ...一种常见的稀疏矩阵压缩存储方法是使用"三元组"表示法,也称为COO(Coordinate)格式,只存储非零元素的值以及它们的行列坐标。
在此只讨论稀疏矩阵的转置问题; 可能看到矩阵就会想到二维数组,比如这样一个矩阵: ?...如果我们只存储这七个元素我想会节省一部分内存空间。但是如果我们只存储矩阵中的元素还是不行的,因为只有元素我们就无法还原矩阵,我们还需要此元素的行列值。这样就好办了。我们声明一个结构体来表示一个元素。...,七个就是二十一个存储单元,可能与二十五个没多大差别,但是如果矩阵的行列是一个很大的值,而且又是稀疏矩阵,这样做就可以节省很大的空间。...这种存储结构只限于稀疏矩阵。 解决了存储结构,就开始矩阵的转置吧!!!...struct juzhen b[MAX_TERM]; //转置后的矩阵 int chushi(struct juzhen a[MAX_TERM]) //初始化稀疏矩阵
在许多实际问题中遇到的大规模矩阵中通常含有大量0元素,这样的矩阵称为稀疏矩阵。Matlab 支持稀疏矩阵,只存储矩阵的非零元素。...1、稀疏矩阵的创建 (1) 将完全存储方式转化为稀疏存储方式 函数A=sparse(S)将矩阵S转化为稀疏存储方式的矩阵A。当矩阵S是稀疏存储方式时,则函数调用相当于A=S。...full(A):返回和稀疏存储矩阵A对应的完全存储方式矩阵。...稀疏矩阵的运算 稀疏存储矩阵只是矩阵的存储方式不同,它的运算规则与普通矩阵是一样的,可以直接参与运算。...所以,Matlab中对满矩阵的运算和函数同样可用在稀 疏矩阵中。结果是稀疏矩阵还是满矩阵,取决于运算符或者函数。当参与运算的对象不全是稀疏存储矩阵时,所得结果一般是完全存储形式。
什么是稀疏矩阵? 有两种常见的矩阵类型,密集和稀疏。主要区别在于稀疏指标有很多零值。密集的指标没有。这是一个具有 4 列和 4 行的稀疏矩阵的示例。 在上面的矩阵中,16 个中有 12 个是零。...这就引出了一个简单的问题: 我们可以在常规的机器学习任务中只存储非零值来压缩矩阵的大小吗? 简单的答案是:是的,可以! 我们可以轻松地将高维稀疏矩阵转换为压缩稀疏行矩阵(简称 CSR 矩阵)。...对于这种压缩我们的要求是压缩后的矩阵可以应用矩阵运算并以有效的方式访问指标,所以CSR并不是唯一方法,还有有更多的选项来存储稀疏矩阵。...,但转换后的 CSR 矩阵将它们存储在 3 个一维数组中。...所以可以理解为将这些数据转换为稀疏矩阵是值得的,因为能够节省很多的存储。 那么如何判断数据的稀疏程度呢?使用NumPy可以计算稀疏度。
稀疏矩阵及其实现 这一节用到了数组的一些知识,和线代中矩阵的计算方法。建议没有基础的读者去看一下矩阵的相关知识。 和之前的博客一样,这次依然参考了严蔚敏的《数据结构(C语言版)》。...稀疏矩阵的预定义 /*--------稀疏矩阵的三元组顺序表存储表示----------*/ typedef int ElemType; #define MAXSIZE 12500 //.../*--------------数据结构定义结束---------------*/ 一些基本方法 /*-----------------基本操作-------------------*/ /*创建稀疏矩阵...M->tu = 0; return OK; } /*销毁稀疏矩阵*/ Status DestroySMatrix(TSMatrix *M){ free(M); if...(M)return ERROR; //若M仍存在,则销毁失败,返回ERROR return OK; } /*给稀疏矩阵赋值*/ Status Assign(TSMatrix *M
既然如此,是否存在一个方法在不改变存储信息(非零元素的行、列外加上值)的情况下可以降低这一操作的时间复杂度?今天要介绍的 DOK 格式的稀疏矩阵就是这样!...如果想存储三元组表示的稀疏矩阵的同时又要确保按照行列索引对元素进行访问的效率高,在存储三元组(非零元素)信息的过程中使用散列表是有必要的。...下回预告 不管是 COO 格式的稀疏矩阵还是 DOK 格式的稀疏矩阵,它们都无一例外地对三元组进行了存储。因此,COO 格式的稀疏矩阵和 DOK 格式的稀疏矩阵可以放在一个板块中。...然而,无论是 COO 格式的稀疏矩阵还是 DOK 格式的稀疏矩阵,进行线性代数的矩阵运算的操作效率都非常低。...至于存储方式也不需要我们去实现,SciPy 已经实现了这样的稀疏矩阵存储方式,它就是另一个板块,这个板块共有 4 种稀疏矩阵格式,分别是{BSR, CSC, CSR, LIL},下一回先介绍 LIL 格式的稀疏矩阵
上回说到,计算机存储稀疏矩阵的核心思想就是对矩阵中的非零元素的信息进行一个必要的管理。...然而,我们都知道在稀疏矩阵中零元素的分布通常情况下没有什么规律,因此仅仅存储非零元素的值是不够的,我们还需要非零元素的其他信息,具体需要什么信息很容易想到:考虑到在矩阵中的每一个元素不仅有值,同时对应的信息还有矩阵的行和列...三元组的存储策略 如果存储一个稀疏矩阵对应的多个三元组可以有非常多的实现方式,针对每一种都进行讲解是非常不现实的,而且完全没有这个必要,因为三元组的存储策略可以分为 2 大类:三元组容器法以及三个序列法...SciPy COO 格式的稀疏矩阵 在开始 SciPy COO 格式的稀疏矩阵之前我花了一些篇幅讲解稀疏矩阵的三元组存储策略,这主要是因为 SciPy COO 格式的稀疏矩阵用的存储策略就是三元组存储策略的第...下回预告 COO 格式的稀疏矩阵因为只存储非零元素的信息,因此空间复杂度就是 O(k),其中 k 表示非零元素的个数。
但是,我们都知道,无论是 LIL 格式的稀疏矩阵还是 CSR 格式的稀疏矩阵全都把稀疏矩阵看成有序稀疏行向量组。然而,稀疏矩阵不仅可以看成是有序稀疏行向量组,还可以看成是有序稀疏列向量组。...我们完全可以把稀疏矩阵看成是有序稀疏列向量组,然后模仿 LIL 格式或者是 CSR 格式对列向量组中的每一个列向量进行压缩存储。...PART. 02 下回预告 不同于 LIL 格式和 CSR 格式都是把稀疏矩阵看成有序稀疏行向量组,然后对行向量组中每一个行向量进行压缩存储,CSC 格式把稀疏矩阵看成有序稀疏列向量组,然后通过模仿 CSR...格式来对列向量组中每一个列向量进行压缩存储。...对于一个大的稀疏矩阵我们显然也可以进行分块,只不过绝大多数情况下大量的块是元素全为零的矩阵,显然,我们可以通过仅存储非零矩阵块也能实现稀疏矩阵的压缩存储。
其中,SciPy 稀疏矩阵是其中一个重要的工具。相比于常规的矩阵,稀疏矩阵主要的特点是它的数据大部分都是 0 ,而非 0 的数据只有少数。这种特点可以在存储和计算上节省大量的时间和空间。...例如,在图像处理中,为了压缩存储图像,可以将彩色图像转化为三个单色图像,然后使用稀疏矩阵存储。另外,在网络分析中,线性代数中的稀疏矩阵常被用来表示网络拓扑结构。...由于稀疏矩阵中大部分元素都是零,因此对其进行存储和计算时,需要采用特殊的算法和存储方法,以达到更高的效率。...显然,存储稀疏矩阵中的所有零元素非常浪费计算机的存储空间,甚至有的时候这是极其不现实的,因此,我们只存储矩阵中的非零元素。...换句话说,计算机存储稀疏矩阵的核心思想就是对矩阵中的非零元素的信息进行一个必要的管理。
有两种常见的矩阵类型,密集和稀疏。主要区别在于稀疏指标有很多零值。密集的指标没有。这是一个具有 4 列和 4 行的稀疏矩阵的示例。 在上面的矩阵中,16 个中有 12 个是零。...这就引出了一个简单的问题: 我们可以在常规的机器学习任务中只存储非零值来压缩矩阵的大小吗? 简单的答案是:是的,可以! 我们可以轻松地将高维稀疏矩阵转换为压缩稀疏行矩阵(简称 CSR 矩阵)。...对于这种压缩我们的要求是压缩后的矩阵可以应用矩阵运算并以有效的方式访问指标,所以CSR并不是唯一方法,还有有更多的选项来存储稀疏矩阵。...,但转换后的 CSR 矩阵将它们存储在 3 个一维数组中。...所以可以理解为将这些数据转换为稀疏矩阵是值得得,因为能够节省很多得存储。 那么如何判断数据的稀疏程度呢?使用NumPy可以计算稀疏度。
“ 上回说到 LIL 格式的稀疏矩阵的 rows 属性和 data 属性是一个其元素是动态数组的数组。其在内存中的存储方式为一个外围定长数组的元素是指向对应动态数组的基地址的指针。...我们显然可以发现 LIL 格式的稀疏矩阵进行该操作效率非常高,因为不同于 COO 格式的稀疏矩阵外加上 DOK 格式的稀疏矩阵获取某一行数据需要扫描整个稀疏矩阵的非零元素信息,LIL 通过把稀疏矩阵看成是有序的稀疏行向量组并对这些稀疏行向量进行压缩存储...part 06、下回预告 BETTER LIFE 不同于 LIL 格式的稀疏矩阵把相邻两行的非零元素的列索引和元素值存储在内存的不同位置,CSR 格式的稀疏矩阵中相邻两行的非零元素的列索引和元素值在内存中是紧密相连的...但是我们可以发现 LIL 格式和 CSR 格式都是把稀疏矩阵看成有序稀疏行向量组,然后对行向量组中每一个行向量进行压缩存储。...我们完全可以把稀疏矩阵看成是有序稀疏列向量组,然后模仿 LIL 格式或者是 CSR 格式对列向量组中的每一个列向量进行压缩存储。
设一个n*m的稀疏矩阵A中有t个非零元素,则稀疏因子δδ的计算公式如下:δ=tn∗mδ=tn∗m(当这个值小于等于0.05时,可以认为是稀疏矩阵) 矩阵压缩 存储矩阵的一般方法是采用二维数组,其优点是可以随机地访问每一个元素...对于稀疏矩阵来说,采用二维数组的存储方法既浪费大量的存储单元用来存放零元素,又要在运算中花费大量的时间来进行零元素的无效计算。所以必须考虑对稀疏矩阵进行压缩存储。...最常用的稀疏矩阵存储格式主要有:COO(Coordinate Format)和CSR(Compressed Sparse Row)。...对行下标进行了压缩,假设矩阵行数是m,则压缩后的数组长度为m+1,记作(row ptr),其中第i个元素(0-base)表示矩阵前i行的非零元个数。...和CSR格式比起DIA和ELL来,更加灵活,易于操作; 3、ELL的优点是快速,而COO优点是灵活,二者结合后的HYB格式是一种不错的稀疏矩阵表示格式; 4、根据Nathan Bell的工作,CSR格式在存储稀疏矩阵时非零元素平均使用的字节数
领取专属 10元无门槛券
手把手带您无忧上云