机器学习系统通常被认为是不透明的、不可预测的,和人类所接受的训练几乎没有任何共通之处。
这是 PaperDaily 的第28篇文章 本期推荐的论文笔记来自 PaperWeekly 社区用户@duinodu。本文研究的问题是深度学习中的网络工程问题。如何设计更好的网络结构,是目前的一个研究热点。这样的网络结构一旦被设计出来,可以马上用于很多其他任务。 本文贡献主要有两点: 1. 把语法模型和深度神经网络模型结合起来,设计的模型同时兼顾特征的 exploration and exploitation(探索和利用),并在网络的深度和宽度上保持平衡; 2. 设计的网络结构,在分类任务和目标检测任务上,
大家好,我是来自北京大学的马思伟。本次我将从以下四个方面为大家分享有关最新一代VVC与AVS3视频编码标准的进展及关键技术特色等内容,希望可以为大家带来有价值的帮助。
人脸识别技术已经成为现代技术的重要组成部分,被广泛应用于安全监控、身份验证、智能门禁等领域。
在七十年的发展历程中,神经网络曾历经质疑、批判与冷落,同时也几度繁荣并取得了许多瞩目的成就。本期分享一篇2016年发表在计算机学报的中文神经网络七十年综述供读者参考。该综述回顾了神经网络的发展历程,综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。
作为近几年的一大热词,人工智能一直是科技圈不可忽视的一大风口。随着智能硬件的迭代,智能家居产品逐步走进千家万户,语音识别、图像识别等AI相关技术也经历了阶梯式发展。如何看待人工智能的本质?人工智能的飞速发展又经历了哪些历程?本文就从技术角度为大家介绍人工智能领域经常提到的几大概念与AI发展简史。 一、人工智能相关概念 1、人工智能(Artifical Intelligence, AI):就是让机器像人一样的智能、会思考, 是机器学习、深度学习在实践中的应用。人工智能更适合理解为一个产业,泛指生产更加智能的
今天介绍一篇2023年11月发表在《Briefings in Bioinformatics》期刊上的论文,题为“From Intuition to AI: Evolution of Small Molecule Representations in Drug Discovery”,文章的第一作者为英国爱丁堡大学的Miles McGibbon研究员和 Steven Shave研究员,以及中南大学的董界副教授,通讯作者为爱丁堡大学的Vincent Blay博士。该综述总结了药物发现领域中分子表示(表征)的演变历程,从最初的人类可读格式,逐步发展到现代的数字描述符、指纹,以及基于序列和图的学习表示。作者强调了各种表示方法在通用性、计算成本、不可逆性和可解释性等方面的优缺点。文章还讨论了药物发现领域的创新机会,包括为高价值、低数据制度创建分子表示,提炼更广泛的生物和化学知识成为新颖的学习表示,以及对新兴治疗方式进行建模。总体而言,文章聚焦于数字化分子表示在药物研发中的关键作用,同时探讨了所面临的挑战和机遇。
2016 年,谷歌 AlphaGo 下围棋战胜了人类世界冠军李世石;美国白宫发布了人工智能白皮书;微软研发的 AI 语音识别首次超过了人类...人工智能一跃成为产业发展的主要方向、科技进步的关键源动力。 相信很多人都注意到了这一趋势,但现实是:仍有许多朋友对 AI 一知半解,如雾里看花。究其原因,或许可以归结为以下几点:找不到系统的学习资料,缺少经验丰富的“引路人”,以及没有一个合适的学习、交流平台。 为此,AI科技评论联合国内顶级 AI 培训平台“1024MOOC学院”,邀请到清华大学计算机系的博士生
AI科技评论消息,最近,Youtube 上的知名游戏博主 SethBling 训练了一个叫 MariFlow 的神经网络来玩 Mario Kart 游戏。在进行15个小时的游戏训练并做了一些针对性的改进后,这个神经网络在 50cc Mushroom Cup 中获得了金牌。 这并不是 SethBling 第一次在游戏中应用神经网络“通关”。此前 SethBling 曾经创建了另一个神经网络MarI/O,通过训练,这个神经网络自己演变成玩“超级马里奥世界”(Super Mario World)的高手。SethB
近日,英国皇家学会(Royal Society)发布了一份题为《机器学习:能通过样本进行学习的计算机的力量与希望(Machinelearning: the power and promise of computers that learn by example)》的专题报告。 以机器学习为代表的人工智能技术是当下最为热门的技术研究方向之一,其被认为对经济、社会、科学等都会有颠覆性的重大影响。 该报告对机器学习进行了较为全面的概述,其中涉及到机器学习的基本概念、发展历程、应用、创造价值的方式和研究前沿等。
Youtube 上的知名游戏博主 SethBling训练了一个叫 MariFlow 的神经网络来玩 Mario Kart 游戏。看懂他怎么做的,你也能举一反三。 最近,Youtube 上的知名游戏博主 SethBling 训练了一个叫 MariFlow 的神经网络来玩 Mario Kart 游戏。在进行15个小时的游戏训练并做了一些针对性的改进后,这个神经网络在 50cc Mushroom Cup 中获得了金牌。 这并不是 SethBling 第一次在游戏中应用神经网络“通关”。此前 SethBling 曾
DeepMind 和 Google Brain 研究人员以及前世界国际象棋冠军Vladimir Kramnik通过概念探索、行为分析和对其激活的检查,探索了人类知识是如何获得的,以及国际象棋概念如何在 AlphaZero 神经网络中表示。
神经网络(NN)几乎可以在每个领域帮助我们用创造性的方式解决问题。本文将介绍神经网络的相关知识。读后你将对神经网络有个大概了解,它是如何工作的?如何创建神经网络?
深度学习基础理论-CNN篇 卷积神经网络的发展历程 - 01 - 卷积神经网络(Convolutional Neural Networks,简称CNN)是一类特殊的人工神经网络,区别于神经网络其
来源:专知本文为论文介绍,建议阅读5分钟本文从分析图计算应用 和图神经网络的执行特征出发,对专用图处理加速架构进行了探索。 来自中科院计算所的严明玉博士论文,入选2022年度“CCF优秀博士学位论文奖”初评名单! https://www.ccf.org.cn/Focus/2022-12-08/781244.shtml 图计算应用和图神经网络是处理图数据的核心应用,被广泛应用于各个领 域。图数据处理应用特有的执行行为导致传统的通用架构无法高效地执行上述 应用。随着智能万物互联时代的来临,上述应用急需高效的硬件
神经网络作为深度学习的核心组件,一直以来都在不断演化和发展。从最早的感知机到如今的复杂卷积神经网络和Transformer模型,神经网络架构的进展不仅在计算机视觉、自然语言处理等领域取得了显著成果,也在推动人工智能技术向前迈进。本文将探讨神经网络架构的最新进展、应用领域以及未来面临的挑战。
【新智元导读】哈佛大学的科学家们把猴子的大脑与神经网络连接起来,试图刺激猴子大脑中负责识别面部的单个神经元。他们利用AI生成图像,然后向猴子展示这些图像,最终成功地激活特定的神经元,而不影响其他神经元。相关论文发表在最新的Cell期刊上。
来自中科院计算所的严明玉博士论文,入选2022年度“CCF优秀博士学位论文奖”初评名单!
如果真的可以重建我们的神经网络,意味着未来我们可以实现一种数字化的“长生不老”。 科技的发展有时候会比好莱坞的科幻电影还要“科幻”,你能想象有一天用3D纳米打印技术就可以复制你的神经网络吗?最近,来自
我们简单回顾一下神经网络的发展历程,如果你想了解更多关于其发展历程的信息,请看这篇维基百科的文章(https://en.wikipedia.org/wiki/Artificial_neural_network#History),它是本章节的基础。
作者:Suryansh S. 机器之心编译 参与:白妤昕、路 神经网络(NN)几乎可以在每个领域帮助我们用创造性的方式解决问题。本文将介绍神经网络的相关知识。读后你将对神经网络有个大概了解,它是如何工作的?如何创建神经网络? 本文涉及以下内容: 神经网络的发展历史 什么是真正的神经网络? 单元/神经元 权重/参数/连接 偏置项 超参数 激活函数 层 神经网络学习时发生了什么? 实现细节(如何管理项目中的所有因素) 关于神经网络的更多信息(更多资源链接) 神经网络的发展历史 我们简单回顾一下神经网络的发展历
【导读】Yann Lecun在纽约大学开设的2020春季《深度学习》课程,干货满满。在课程网站上出了最新的中文版课程笔记。
机器之心报道 参与:路雪、李泽南 近日,一家名为 DeepL 的创业公司发布了自己的神经翻译工具,引起了业内关注。据称在盲测与 BELU 分数测试中,这款全新翻译系统的性能远超来自谷歌、微软和 Facebook 三家巨头的同类产品。对于我们来说,DeepL 唯一的问题就是何时能够支持中文了。 谷歌、微软和 Facebook 等科技巨头已在机器翻译领域耕耘多年,但一家名为 DeepL 的创业公司最近推出的翻译工具又将这一领域向前推进了一步。DeepL 与它的竞争对手相比速度相同,而且更加准确而精密。 目前,D
Google最新宣布发布谷歌神经机器翻译(GNMT:Google Neural Machine Translation)系统,在官方博客中Google称该系统使用了当前最先进的训练技术,能够实现到当下机器翻译质量上最大的提升。 听上去十分令人激动,不是吗? 有从事翻译职业的网友甚至这样形容: 作为翻译,看到这个新闻的时候,我理解了18世纪纺织工人看到蒸汽机时的忧虑与恐惧。 真有这么可怕吗?让我们先来回顾下Google Translate的发展历程。 | Google Translate发展历程: 在2006
过去十年,机器学习(尤其是深度学习)领域涌现了大量算法和应用。在这些深度学习算法和应用涌现的背后,是各种各样的深度学习工具和框架。它们是机器学习革命的脚手架:TensorFlow 和 PyTorch 等深度学习框架的广泛使用,使得许多 ML 从业者能够使用适合的领域特定的编程语言和丰富的构建模块更容易地组装模型。
AlphaZero 表明神经网络可以学到人类可理解的表征。 作者 | 李梅 编辑 | 陈彩娴 国际象棋一直是 AI 的试验场。70 年前,艾伦·图灵猜想可以制造一台能够自我学习并不断从自身经验中获得改进的下棋机器。上世纪出现的“深蓝”第一次击败人类,但它依赖专家编码人类的国际象棋知识,而诞生于 2017 年的 AlphaZero 作为一种神经网络驱动的强化学习机器实现了图灵的猜想。 AlphaZero 的无需使用任何人工设计的启发式算法,也不需要观看人类下棋,而是完全通过自我对弈进行训练。 那么,它真的学习
现在的深度学习就是利用深度神经网络来进行模型训练。深度神经网络是神经网络的延续,而神经网络在几十年前则是一种机器学习模型。
---- 新智元报道 编辑:LRS 【新智元导读】神经网络模型越训越大,也越来越费电。柏林工业大学的研究团队反其道行之,搞了一个单神经元的网络,能模拟多层神经网络,性能还不差! 要说世界上最先进的神经网络模型是什么?那绝对是人脑莫属了。 人脑有860亿个神经元,相互结合在一起构成的神经网络不仅在性能上超越人工神经网络,能量消耗也少的惊人。 当下的人工智能系统试图通过创建多层神经网络来模仿人脑,旨在将尽可能多的神经元塞进尽可能少的空间。 这种方式虽然取得了性能进步,但这样的设计不仅需要大量的电力,
图神经网络最近是个很火的话题,与传统的神经网络相比,图神经网络将图形作为输入(而不是原始像素或声波),然后学习推理和预测对象及其关系如何随时间演变。图网络方法已经证明了在一系列应用实现快速学习,达到人类水平的能力。
嘿, Siri:语音处理 ---- 以 Siri 为例分享了语音处理的一些技术进展。其要点如下: 语音处理可以分为语音识别和语音合成两类任务; 语音合成过程包括文本分析、音韵生成、单元选择、波形串联等
【新智元导读】本文简单的介绍了神经网络近50年的发展历程,从1968年的Hubel和Wiesel开展的猫实验,一直到李飞飞教授等人的成果。从本质上讲解了人工神经网络的原理及学习过程,对于想了解神经网络起源及发展历程的读者而言,是一篇较为合适的文章。 如何像人类大脑一样完成一项视觉任务是复杂的,比如深度感知、目标跟踪、边缘检测等,而扫描环境和定位是大脑经常做的事情,这些都被人们认为是理所当然的事情。在过去某段时间里,研究者们可能从来没有想过创建类似人类大脑处理任务一样的系统。然而,在过去的50年中,我们已经从
AI 科技评论按:深度学习的发展带给人工智能领域的影响可谓是革命性的,然而该领域目前还存在很多未解决的问题,其中就包括不可解释性等问题。而希伯来大学计算机科学家和神经学家Naftali Tishby 等人提出的「信息瓶颈」理论,则尝试来解决神经网络的一系列问题,自提出以来便一直受到 AI 界的广泛关注。IBM 研究院也开展相关研究来分析这一理论,以期能够解决神经网络中的某些问题,相关成果发表在 IBM 研究院官网博客上,AI 科技评论编译如下。
目标检测领域发展至今已有二十余载,从早期的传统方法到如今的深度学习方法,精度越来越高的同时速度也越来越快,这得益于深度学习等相关技术的不断发展。本文将对目标检测领域的发展做一个系统性的介绍,旨在为读者构建一个完整的知识体系架构,同时了解目标检测相关的技术栈及其未来的发展趋势。由于编者水平有限,本文若有不当之处还请指出与纠正,欢迎大家评论交流!
回顾网络安全产业的发展历程,随着网络空间攻击面不断扩大,恶意攻击者持续规模化、组织化,攻击技术的自动化、智能化、武器化,多种因素的作用下,使得传统堆砌基于规则等技术的防护设备逐渐失效。面对日趋白热化、持续化的网络攻防对抗环境,技术的演进直接关系到战略实施的有效性。从技术演进的角度,攻防能力的较量已经逐渐演变为攻防参与者的军备竞赛。在有限的信息、资源下,充分覆盖安全威胁,有效降低企业、组织乃至国家的系统性安全风险,成为全面数字时代网络安全的关键目标。
前 言 本文简单的介绍了神经网络近50年的发展历程,从1968年的Hubel和Wiesel开展的猫实验,一直到李飞飞教授等人的成果。从本质上讲解了人工神经网络的原理及学习过程,对于想了解神经网络起源及发展历程的读者而言,是一篇较为合适的文章。 如何像人类大脑一样完成一项视觉任务是复杂的,比如深度感知、目标跟踪、边缘检测等,而扫描环境和定位是大脑经常做的事情,这些都被人们认为是理所当然的事情。在过去某段时间里,研究者们可能从来没有想过创建类似人类大脑处理任务一样的系统。然而,在过去的50年中,我们已经从神经
作为机器学习最重要的一个分支,深度学习近年来发展迅猛,在国内外都引起了广泛的关注。然而深度学习的火热也不是一时兴起的,而是经历了一段漫长的发展史。接下来我们简单了解一下深度学习的发展历程。
2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。这两年在不管在国内还是在国外,人工智能、机器学习仿佛一夜之前传遍大街小巷。 概述 机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判。如今,领先的科技巨头无不在机器学习下予以极大投入。Facebook、苹果、微软,甚至国内的百度,Google 自然也在其中。 去年早些时候 Google DeepMind 的 AlphaGo 项目在举世瞩目的围棋比赛中一举击败了韩国选手李世石,媒体就是使用了人工
机器学习系统并非是“生而平等”的。没有一种算法能应对所有的机器学习任务,这就让寻找最优的机器学习算法成为一项艰巨又耗时的工作。不过这个问题现在有希望解决了,最近IBM的研究人员开发了一套能够自动选择AI优化算法的系统。
机器之心报道 演讲:任化龙 编辑:杜伟 近日,在 2022 WAIC AI 开发者日上,忆海原识创始人兼 CEO 任化龙发表主题演讲《类脑计算的发展与关键技术》。演讲中,他夯实细致地介绍了类脑智能的特点以及与传统技术的对比,以及忆海原识自主研发的 Ocean 类脑计算平台。 以下为任化龙的演讲内容,机器之心进行了不改变原意的编辑、整理: 忆海原识专注于灵巧手和类脑智能,推动机器人产业赋能生活服务和工业生产,解放人类的生产力。 忆海原识团队起源于 2007 年,当时在研发灵巧手本体,后来发现智能才是机器人
---- 新智元报道 编辑:Aeneas 好困 【新智元导读】8月10日,一个名为Stable Diffusion的开源模型正式发布,众网友都玩疯了。 最近,一个叫Xander Steenbrugge的AI研究员兼数码艺术家,上传了一段非常震撼的视频《跨越时间之旅》。 地球上的生物大进化,从原始海洋起始,到远古蜥蜴、恐龙、哺乳动物,再到猴子、猩猩、猿人、智人……最后出现了科幻中的未来世界。 而Steenbrugge也激动地评论道:我们正在跨越一个门槛,生成式人工智能不再只是关于新颖的美学,而是演变
---- 新智元报道 来源:专知 【新智元导读】近年来,随着人工智能与大数据技术的发展,深度神经网络在语音识别、自然语言处理、图像理解、视频分析等应用领域取得了突破性进展。深度神经网络的模型层数多、参数量大且计算复杂,对硬件的计算能力、内存带宽及数据存储等有较高的要求。 FPGA 作为一种可编程逻辑器件,具有可编程、高性能、低能耗、高稳定、 可并行和安全性的特点。其与深度神经网络的结合成为推动人工智能产业应用的研究热点。 本文首先简述了人工神经网络坎坷的七十年发展历程与目前主流的深度神经网络模型,
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
机器之心原创 作者:Angulia Chao 参与:Joni、侯韵楚、高振 让机器具备生物一样的进化能力一直是计算机科学的一个热门研究领域,今年三月份,谷歌的多位研究者提出了一种图像分类器的大规模进化方法,机器之心也曾报道过这项研究,参阅:《深度 | 谷歌和 OpenAI 新研究:如何使用达尔文进化论辅助设计人工智能算法?》。研究发布之后,机器之心的技术分析师又对这项重要研究进行了更加深度细致的解读。 论文:图像分类器的大规模进化(Large-Scale Evolution of Image Classi
作者丨 Reddit 译者丨王强 策划丨万佳 多年来,Reddit 已经发展成互联网世界一片广阔而多样化的土地。Reddit 的核心是众多社区组成的网络。从你时间线的内容到整个站点的无数讨论中反映的文化,社区犹如 Reddit 流动的血液,让它变成今天这个模样。Reddit 多年来的增长给一直以来为我们服务的数据处理和服务系统带来了极大压力。 本文介绍了我们构建适应 Reddit 规模系统的历程,并会谈到为什么这一历程是寻找更佳途径的必要之路。 1需求 探索新去处从来不是什么舒舒服服就能做到的事情。无论是学
神经网络和深度学习技术是当今大多数高级智能应用的基础。在本文中,来自阿里巴巴搜索部门的高级算法专家孙飞博士将简要介绍神经网络的发展,并讨论该领域的最新方法。
昨晚,“递归神经网络之父”Jürgen Schmidhuber 在推特上亲自发文,称目前引用数最高的5项神经网络工作都基于他的团队成果,一时引起了网友的广泛讨论。这并不是他首次发声,Jürgen Schmidhuber近两年来发表无数文章和言论,每次提及几项他过去的研究,表示是他首创,并抱怨学界不承认他对AI领域的贡献。
要聊ChatGPT用到的机器学习技术,我们不得不回顾一下机器学习技术的发展。因为,ChatGPT用到的技术不是完全从零的发明,它也是站在巨人的肩膀上发展起来的。
导语:在CVPR 2020上,商汤研究院链接与编译组和北京航空航天大学刘祥龙老师团队提出了一种旨在优化前后向传播中信息流的实用、高效的网络二值化新算法IR-Net。不同于以往二值神经网络大多关注量化误差方面,本文首次从统一信息的角度研究了二值网络的前向和后向传播过程,为网络二值化机制的研究提供了全新视角。同时,该工作首次在ARM设备上进行了先进二值化算法效率验证,显示了IR-Net部署时的优异性能和极高的实用性,有助于解决工业界关注的神经网络二值化落地的核心问题。
领取专属 10元无门槛券
手把手带您无忧上云