首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习的前身,神经网络与神经元的概念

    作者:Free 深度学习可以说是目前“人工智能浪潮”火热的一个根本原因,就是因为它的兴起,其中包括深度神经网络、循环神经网络和卷积神经网络的突破,让语音识别、自然语言处理和计算机视觉等基础技术突破以前的瓶颈。而要了解深度学习,就必须首先了解“深度学习”的前身,神经网络与神经元的概念。 一、神经元的构成 神经元可以说是深度学习中最基本的单位元素,几乎所有深度学习的网络都是由神经元通过不同的方式组合起来。 一个完整的神经元由两部分构成,分别是“线性模型”与“激励函数”。如果看过之前的文章,相信可以回忆起其

    06

    年度回顾:各类监督方法流行趋势分析

    机器学习领域在过去几十年中经历了巨大的变化,不可否认的是,虽然有些方法已经存在了很长时间,但仍然是该领域的主要内容。例如,最小二乘法( least squares)的概念在19世纪早期由勒让德和高斯提出,最基本的形式的神经网络( neural networks)早在1958年就引入的,并在过去的几十年中大幅提升、支持向量机(SVM)等方法则更是较新的方法,这些方法仍然占据了机器学习领域应用中的半壁江山。 随着科研的进行,有大量可用的监督学习方法被发明。使用者通常会提出以下问题:什么是最好的模型?众所周知,这个问题没有标准答案,因为模型的有用性取决于手头的数据以及具体处理的问题,合适的就是最好的。那么,可以转换下思路,换成这个问题:最受欢迎的模型是什么?这将是本文的关注点。

    02

    哪个才是解决回归问题的最佳算法?线性回归、神经网络还是随机森林?

    编译 | AI科技大本营 参与 | 王珂凝 编辑 | 明 明 【AI科技大本营导读】现在,不管想解决什么类型的机器学习(ML)问题,都会有各种不同的算法可以供你选择。尽管在一定程度上,一种算法并不能总是优于另外一种算法,但是可以将每种算法的一些特性作为快速选择最佳算法和调整超参数的准则。 本文,我们将展示几个著名的用于解决回归问题的机器学习算法,并根据它们的优缺点设定何时使用这一准则。尤其在为回归问题选择最佳机器学习算法上,本文将会为你提供一个重要的引导! ▌线性回归和多项式回归 线性回归 从简单的

    07

    选择困难症?一文通解如何选择最合适的机器学习算法

    大数据文摘作品,转载要求见文末 编译 | 姜范波,寒小阳,钱天培 如果你是一个初学/中等程度的数据科学家/分析师,并且想要将机器学习的算法运用到解决你关心的问题的上,那么这篇文章正是为你写的! 初学者面对各种机器学习算法,一个典型的问题是:我应该使用哪种算法?问题的答案取决于许多因素,包括: 数据的大小,质量和性质。 可接受的计算时间。 任务的紧迫性。 你想用数据做什么。 即使是经验丰富的数据科学家也无法在尝试不同的算法之前,就断定哪种算法会是最好的。在此我们并非倡导一蹴而就的方法,但是我们希望根据一些明确

    04
    领券