《公平信用报告法》制约,强调评分卡的可解释性。所以初始评分(申请评分)一般用回归,回归是解释力度最大的。
监督学习是机器学习中一种十分重要的算法。与无监督学习相比,监督学习有明确的目标。
线性回归:进行直线或曲线拟合,一般使用“最小二乘法”来求解。最小二乘法将最优问题转化为求函数极值问题。函数极值在数学上我们一般会采用求导数为0的方法。 但这种做法并不适合计算机,可能求解不出来,也可能计算量太大。计算机科学界专门有一个学科叫“数值计算”,专门用来提升计算机进行各类计算时的准确性和效率问题。
, 自变量和因变量之间的关系是一条直线 , 叫做一元线性回归分析 ; 如果有多个自变量 , 自变量与因变量是线性关系 , 叫做多远线性回归分析 ;
机器学习一直是Python的一大热门方向,其中由神经网络算法衍生出来的深度学习在很多方面大放光彩。那神经网络到底是个个什么东西呢?
如果想从事数据科学,但是又没有数学背景,那么有多少数学知识是做数据科学所必须的?
这部分不是要介绍哪个具体的机器学习算法,前面做了一些机器学习的算法,本人在学习的过程中也去看别人写的材料,但是很多作者写的太难懂,或者就是放了太多的公式,所以我就想我来写点这方面的材料可以给大家参照,当然,由于本人才疏学浅,在写博客或者在写程序的过程中有什么不合理或者说错误的地方,还劳烦各位多多指出,因为有你们的支持才能体现出我做这些工作的价值。
作者:Free 深度学习可以说是目前“人工智能浪潮”火热的一个根本原因,就是因为它的兴起,其中包括深度神经网络、循环神经网络和卷积神经网络的突破,让语音识别、自然语言处理和计算机视觉等基础技术突破以前的瓶颈。而要了解深度学习,就必须首先了解“深度学习”的前身,神经网络与神经元的概念。 一、神经元的构成 神经元可以说是深度学习中最基本的单位元素,几乎所有深度学习的网络都是由神经元通过不同的方式组合起来。 一个完整的神经元由两部分构成,分别是“线性模型”与“激励函数”。如果看过之前的文章,相信可以回忆起其
作者:张磊 编辑:赵一帆 本周剩余内容: 2. 建模方法回顾 2.0 偏差与方差 2.1 线性回归-Linear Regression 2.1.1 模型原理 2.1.2 损失函数 2.2 支持向量机-Support Vector Machine 2.2.1 模型原理 2.2.2 损失函数 2.2.3 核方法 2.3 逻辑回归-Logistic Regression 2.3.1
2.5.3 Gradient Boosting Decision Tree
在本文中我们来研究怎样用 TensorFlow.js 创建基本的 AI 模型,并用更复杂的模型实现一些有趣的功能。我只是刚刚开始接触人工智能,尽管不需要深入的人工智能知识,但还是需要搞清楚一些概念才行。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即线性回归和逻辑回归。
1)线性回归:进行直线或曲线拟合,一般使用“最小二乘法”来求解。最小二乘法将最优问题转化为求函数极值问题。函数极值在数学上我们一般会采用求导数为0的方法。但这种做法并不适合计算机,可能求解不出来,也可能计算量太大。计算机科学界专门有一个学科叫“数值计算”,专门用来提升计算机进行各类计算时的准确性和效率问题。
作者:Simon Kornblith、Mohammad Norouzi、Honglak Lee、Geoffrey Hinton
机器学习领域在过去几十年中经历了巨大的变化,不可否认的是,虽然有些方法已经存在了很长时间,但仍然是该领域的主要内容。例如,最小二乘法( least squares)的概念在19世纪早期由勒让德和高斯提出,最基本的形式的神经网络( neural networks)早在1958年就引入的,并在过去的几十年中大幅提升、支持向量机(SVM)等方法则更是较新的方法,这些方法仍然占据了机器学习领域应用中的半壁江山。 随着科研的进行,有大量可用的监督学习方法被发明。使用者通常会提出以下问题:什么是最好的模型?众所周知,这个问题没有标准答案,因为模型的有用性取决于手头的数据以及具体处理的问题,合适的就是最好的。那么,可以转换下思路,换成这个问题:最受欢迎的模型是什么?这将是本文的关注点。
最近,弗吉尼亚理工博士Amirsina Torfi在GitHub上贡献了一个新的教程,教程清晰简单,喜提2600颗星~
提到回归算法,我想很多人都会想起线性回归,因为它通俗易懂且非常简单。但是,线性回归由于其基本功能和有限的移动自由度,通常不适用于现实世界的数据。
【新智元导读】我们将机器学习中最突出、最常用的算法分为三类:线性模型、基于树的模型、神经网络,用一张图表简明地指出了每一类的优势和劣势。 在机器学习中,我们的目标要么是预测(prediction),要么是聚类(clustering)。本文重点关注的是预测。预测是从一组输入变量来预估输出变量的值的过程。例如,得到有关房子的一组特征,我们可以预测它的销售价格。预测问题可以分为两大类: 回归问题:其中要预测的变量是数字的(例如房屋的价格); 分类问题:其中要预测的变量是“是/否”的答案(例如,预测某个设备是否会故
编译 | AI科技大本营 参与 | 王珂凝 编辑 | 明 明 【AI科技大本营导读】现在,不管想解决什么类型的机器学习(ML)问题,都会有各种不同的算法可以供你选择。尽管在一定程度上,一种算法并不能总是优于另外一种算法,但是可以将每种算法的一些特性作为快速选择最佳算法和调整超参数的准则。 本文,我们将展示几个著名的用于解决回归问题的机器学习算法,并根据它们的优缺点设定何时使用这一准则。尤其在为回归问题选择最佳机器学习算法上,本文将会为你提供一个重要的引导! ▌线性回归和多项式回归 线性回归 从简单的
线性回归是单层神经网络,设计的概念和技术适用于大多数深度学习模型;因此,我们以线性回归为例,学习深度学习模型的基本要素和表示方法。
机器学习有非常多令人困惑及不解的地方,很多问题都没有明确的答案。但在面试中,如何探查到面试官想要提问的知识点就显得非常重要了。
机器学习是人工智能(Artificial Intelligence,简称AI)的一个重要组成部分。它是一种通过数据和模型自动化推理、预测和决策的技术。在机器学习中,算法是核心。算法是计算机根据数据和任务要求自动推断出来的规则和方法。
【导读】大家好,我是泳鱼。一个乐于探索和分享AI知识的码农!最近,吴恩达在其创办的人工智能周讯《The Batch》上更新了一篇博文,总结介绍了机器学习领域6个核心算法,分别是:线性回归、逻辑回归、梯度下降、神经网络、决策树与k均值聚类算法。下面我们来具体了解下~
在这篇文章中,我将解释有监督的机器学习技术如何相互关联,将简单模型嵌套到更复杂的模型中,这些模型本身嵌入到更复杂的算法中。接下来的内容将不仅仅是一份模型备用表,也不仅仅是一份监督方法的年表,它将用文字、方程和图表来解释主要机器学习技术家族之间的关系,以及它们在偏差-方差权衡难题中的相对位置。
传统线性回归模型可通过最小平方方法获取知识并在回归系数存储知识。在此意义下,其为神经网络。实际上,您可以证明线性回归为特定神经网络的特殊个案。但是,线性回归具有严格模型结构和在学习数据之前施加的一组假设。
AiTechYun 编辑:xiaoshan 任何类型的机器学习(ML)问题,都有许多不同的算法可供选择。在机器学习中,有一种叫做“无免费午餐(No Free Lunch)”的定理,意思是没有任何一种ML算法对所有问题都是最适合的。不同ML算法的性能在很大程度上取决于数据的大小和结构。因此,除非我们直接通过简单的试验和错误来测试我们的算法,否则我们往往不清楚是否正确选择了算法。 但是,我们需要了解每个ML算法的优点和缺点。尽管一种算法并不总是优于另一种算法,但是我们可以通过了解每种算法的一些特征来快速选择正确
事实上,人工智能已经存在于我们生活中很久了。但对很多人来讲,人工智能还是一个较为“高深”的技术,然而再高深的技术,也是从基础原理开始的。人工智能领域中就流传着10大算法,它们的原理浅显,很早就被发现、应用,甚至你在中学时就学过,在生活中也都极为常见。
编译 | 黄楠 编辑 | 陈彩娴 最近,吴恩达在其创办的人工智能周讯《The Batch》上更新了一篇博文,总结了机器学习领域多个基础算法的历史溯源。 文章开头,吴恩达回忆他的研究历程中曾有一次抉择: 多年前,在一次项目中,选择算法时,他不得不在神经网络与决策树学习算法之间做选择。考虑到计算预算,他最终选择了神经网络,在很长的一段时间内弃用增强决策树。 这是一个错误的决定,「幸好我的团队很快修改了我的选择,项目才成功。」吴恩达谈道。 他由此感叹,不断学习与更新基础知识是十分重要的。与其他技术领域一样,随着研
本文分别介绍:线性回归和多项式回归、神经网络、决策树和决策森林,并分别列出了其各自优缺点,相信有助于指导我们在特定工作中选择合适的算法。
机器学习常见算法的一种合理分类:生成/识别,参数/非参数,监督/无监督等。例如,Scikit-Learn文档页面通过学习机制对算法进行分组,产生类别如:1,广义线性模型,2,支持向量机,3,最近邻居法,4,决策树,5,神经网络,等等…但这样的分类并不实用。应用机器学习时通常不会直接想,“今天训练一个支持向量机”,而是通常有一个最终目标,例如利用某算法来预测结果或分类观察。 图1机器学习技术的机器人大脑 机器学习中,有一种叫做“没有免费的午餐”的定理,意思是说没有任何一种算法可以完美地解决每个问题,这对于
本文是对机器学习算法的一个概览,以及个人的学习小结。通过阅读本文,可以快速地对机器学习算法有一个比较清晰的了解。本文承诺不会出现任何数学公式及推导,适合茶余饭后轻松阅读,希望能让读者比较舒适地获取到一点有用的东西。 引言 本文是对机器学习算法的一个概览,以及个人的学习小结。通过阅读本文,可以快速地对机器学习算法有一个比较清晰的了解。本文承诺不会出现任何数学公式及推导,适合茶余饭后轻松阅读,希望能让读者比较舒适地获取到一点有用的东西。 本文主要分为三部分,第一部分为异常检测算法的介绍,个人感觉这类算法对监控类
来源:AI科技评论本文约7100字,建议阅读13分钟本文总结了机器学习领域多个基础算法的历史溯源。 最近,吴恩达在其创办的人工智能周讯《The Batch》上更新了一篇博文,总结了机器学习领域多个基础算法的历史溯源。 文章开头,吴恩达回忆他的研究历程中曾有一次抉择: 多年前,在一次项目中,选择算法时,他不得不在神经网络与决策树学习算法之间做选择。考虑到计算预算,他最终选择了神经网络,在很长的一段时间内弃用增强决策树。 这是一个错误的决定,「幸好我的团队很快修改了我的选择,项目才成功。」吴恩达谈道。 他由此
有监督学习通常是利用带有专家标注的标签的训练数据,学习一个从输入变量X到输入变量Y的函数映射。Y = f (X),训练数据通常是(n×x,y)的形式,其中n代表训练样本的大小,x和y分别是变量X和Y的样本值。
这在模型噪声随着模型变量之一变化或为非线性的情况下特别有用,比如在存在异方差性的情况下。
安德鲁•W•穆尔简介 卡耐基梅隆大学的计算机科学学院院长,机器学习、人工智能、机器人技术,大数据统计计算行业背景,热爱算法和统计,最喜欢机器人技术。 曾在机器人控制,生产制造,强化学习,天体物理学算法,防恐,网络广告,网络点击率的预测,电子商务的监控算法,物流等领域工作过。 我热爱的技术(算法,云架构,统计,机器人,语言技术,机器学习,计算生物学,人工智能和软件开发过程)对社会的未来的影响。我们很幸运的生活在这样一个激动人心的充满变化的时代。 【陆勤看点】本文续安德鲁.M.莫尔的教程(一),介绍最大
选自Dataconomy 机器之心编译 参与:王宇欣、吴攀、蒋思源 近段时间以来,我们频频听到「机器学习(machine learning)」这个词(通常在预测分析(predictive analysis)和人工智能(artificial intelligence)的上下文中)。几十年来,机器学习实际上已经变成了一门独立的领域。由于现代计算能力的进步,我们最近才能够真正大规模地利用机器学习。而实际上机器学习是如何工作的呢?答案很简单:算法(algorithm)。 机器学习是人工智能(artificial i
附注:除了以上两大类模型,还有半监督学习和强化学习等其他类型的机器学习模型。半监督学习是指在有部分标签数据的情况下,结合监督学习和无监督学习的方法进行模型训练。强化学习是指通过让计算机自动与环境交互,学习出如何最大化奖励的策略。
本文介绍了TensorFlow的基础知识,并通过多个示例来演示了如何使用TensorFlow来解决不同的机器学习问题。其中包括线性回归、支持向量机、最近邻方法、神经网络、卷积神经网络和循环神经网络等。文章还介绍了TensorFlow的高级用法,包括生产环境、多GPU和多节点设置等。
大数据文摘作品,转载要求见文末 编译 | 姜范波,寒小阳,钱天培 如果你是一个初学/中等程度的数据科学家/分析师,并且想要将机器学习的算法运用到解决你关心的问题的上,那么这篇文章正是为你写的! 初学者面对各种机器学习算法,一个典型的问题是:我应该使用哪种算法?问题的答案取决于许多因素,包括: 数据的大小,质量和性质。 可接受的计算时间。 任务的紧迫性。 你想用数据做什么。 即使是经验丰富的数据科学家也无法在尝试不同的算法之前,就断定哪种算法会是最好的。在此我们并非倡导一蹴而就的方法,但是我们希望根据一些明确
如果是深度学习和神经网络的新手,那么一定遇到过“ TensorFlow ”和“ PyTorch ” 这两个术语。这是在数据科学领域中使用的两个流行的深度学习框架。
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。
机器学习是目前信息技术中最激动人心的方向之一。本文以吴恩达老师的机器学习课程为主线,使用 Process On 在线绘图构建机器学习的思维导图。
深度学习火的一塌糊涂,我们都知道TensorFlow是Google开源的一款人工智能学习库。我们来一起解读下tenrflow到底啥意思:Tensor的意思是张量,代表N维数组;Flow的意思是流,代表基于数据流图的计算。把N维数字从流图的一端流动到另一端的过程,就是人工智能神经网络进行分析和处理的过程。
现在的深度学习就是利用深度神经网络来进行模型训练。深度神经网络是神经网络的延续,而神经网络在几十年前则是一种机器学习模型。
关键时刻,第一时间送达! 作者简介:chen_h,AI 算法工程师,擅长利用 TensorFlow 处理 NLP 问题。曾任职蘑菇街(美丽联合集团)和 AI100(CSDN)担任算法工程师。主要负责项目:语料文本分类,聊天机器人设计与开发,组织举办大数据竞赛。 本文来自作者在 GitChat 上分享「在实际项目中,如何选择合适的机器学习模型」。 本文我们主要面向初学者或中级数据分析师,他们对识别和应用机器学习算法都非常感兴趣,但是初学者在面对各种机器学习算法时,都会遇到一个问题是 “在实际项目中,我到底
神经网络(深度学习)学习到的是什么?一个含糊的回答是,学习到的是数据的本质规律。但具体这本质规律究竟是什么呢?要回答这个问题,我们可以从神经网络的原理开始了解。
本文介绍了机器学习的一些基本概念,包括有监督学习、无监督学习、半监督学习、强化学习等,以及常用的算法和技术,包括决策树、朴素贝叶斯、支持向量机、神经网络等。文章还介绍了深度学习的基本原理和技术,包括卷积神经网络和循环神经网络等,并探讨了深度学习在自然语言处理等领域的应用。最后,文章探讨了未来机器学习技术的发展趋势和方向,包括强化学习、迁移学习、半监督学习、主动学习等。
如今,像Pytorch和TensorFlow这样的工具使得人工智能的开发变得如此简单,以至于许多该领域的新手甚至都懒得去学习神经网络是如何工作的。
本文中蓝色字体为外部链接,部分外部链接无法从文章中直接跳转,请点击【阅读原文】以访问。
领取专属 10元无门槛券
手把手带您无忧上云