首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【机器学习】机器学习算法基础知识

    在我们了解了需要解决的机器学习问题的类型之后,我们可以开始考虑搜集来的数据的类型以及我们可以尝试的机器学习算法。在这个帖子里,我们会介绍一遍最流行的机器学习算法。通过浏览主要的算法来大致了解可以利用的方法是很有帮助的。 可利用的算法非常之多。困难之处在于既有不同种类的方法,也有对这些方法的扩展。这导致很快就难以区分到底什么才是正统的算法。在这个帖子里,我希望给你两种方式来思考和区分在这个领域中你将会遇到的算法。 第一种划分算法的方式是根据学习的方式,第二种则是基于形式和功能的相似性(就像把相似的动物归为一类

    08

    【知识】新手必看的十种机器学习算法

    机器学习领域有一条“没有免费的午餐”定理。简单解释下的话,它是说没有任何一种算法能够适用于所有问题,特别是在监督学习中。 例如,你不能说神经网络就一定比决策树好,反之亦然。要判断算法优劣,数据集的大小和结构等众多因素都至关重要。所以,你应该针对你的问题尝试不同的算法。然后使用保留的测试集对性能进行评估,选出较好的算法。 当然,算法必须适合于你的问题。就比如说,如果你想清扫你的房子,你需要吸尘器,扫帚,拖把。而不是拿起铲子去开始挖地。 大的原则 不过,对于预测建模来说,有一条通用的原则适用于所有监督学习算法。

    06

    FaissPQ索引简介

    随着神经网络的发展,embedding的思想被广泛的应用在搜推广、图像、自然语言处理等领域,在实际的工业场景中,我们常常会遇到基于embedding进行文本、图像、视频等物料的相关内容检索问题,这类问题通常要求在几毫秒的时间内完成百万甚至亿级别候选物料上的检索。 在这类问题中,主要需要考虑的三个问题是速度、内存以及准确性,其中速度是必须要解决的问题,同时我们希望能在保证速度的基础上,尽可能的提升准确率,降低内存占用。因此可以想到,我们是不是可以通过一定的方法,利用内存和准确率来换取查询速度的提升。 Faiss是由FacebookAI团队开发的向量检索库,提供了多种向量查询方案,可以实现在亿级别候选物料上的毫秒级查询,是目前最主流的向量检索库。在Faiss中,把具体的查询算法实现称为索引,由于faiss中提供了多种类型的索引,因此了解其中不同索引索引的实现方式对于我们的应用就尤为关键。

    01
    领券