大家好,又见面了,我是你们的朋友全栈君。 二、问答题(每题 5 分,共 20 分) 1、语音信号处理主要研究哪几方面的内容? 语音信号处理是研究用数字信号处理技术对语言信号进行处理的一门学科, 语音信号处理的理论和研究包括紧密结合的两个方面: 一方面, 从语言的产生和感知来对其进行研究, 这一研究与语言、语言学、认知科学、心理、生理等学科密不可分;另一方面,是将语音作为一种信号来进行处理, 包括传统的数字信号处理技术以及一些新的应用于语音信号的处理方法和技术。 2、语音识别的研究目标和计算机自动
语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。
K邻近算法的缺点是你需要坚持整个训练数据集。学习向量量化算法(或简称LVQ)是一种人工神经网络算法,允许您选择要挂起的训练实例数量,并准确了解这些实例应该是什么样子。
近日,谷歌又推出了一款基于人工智能的音频编解码器—— SoundStream ,它是一款端到端的神经音频编解码器,可以提供更高质量的音频,同时编码不同的声音类型,包括干净的语音、嘈杂和混响的语音、音乐和环境声音。并且,谷歌宣布这是第一个支持语音和音乐的AI编解码器,同时能够在智能手机CPU上实时运行。
近年来,研究人员一直在尝试开发自动复述的方法,复述就是对相同语义的不同表达,例如一句话,可以有一千种说法。这需要从文本中自动抽象语义内容。
对于想进入语音识别领域的学习者来说,了解语音识别系统的一些基本概念,会有助于更快的进入这个行业的交流平台,本文对语音识别系统的一些常见概念做了整理,希望能对刚开始接触语音学习的人有所帮助。
脑图地址 1. 分形图像压缩技术 作者 技术 功能 优点 缺点 应用 结果 Jeng et al. (2009) Huber 分形图像压缩 嵌入线性Huber回归编码 保持图像质量 高计算成本 适用于损坏的图像压缩 由于图像中的噪声HFIC对异常值具有较好的鲁棒性,PSNR为>26.42 dB Thomas and Deravi (1995) 使用启发式搜索分形图像压缩 通过自变换有效利用图像冗余 达到双倍压缩比率 编码排序长度比解码长 多媒体和图像归档 压缩比达到41:1 Kumar et al. (19
image 我们用蓝色实线将这张图划分为16个区域。任意的一对数(也就是横轴x和纵轴y组成的任意的一个坐标点(x, y))都会落到上面这张图中的某一特定区域。然后它就会被该区域的红星的点近似。这里有16块不同区域,就是16个红星点。然后这16个值就可以用4位的二进制码来编码表示(2^4=16)。因此,这是个2-dimensional, 4-bit VQ,它的速率同样是2bits/dimension。上面这些红星点就是量化矢量,表示图中的任意一个点都可以量化为这16个矢量中的其中一个。
机器之心报道 机器之心编辑部 在一篇被 ICML 2021 接收的论文中,MIT 的一位计算机科学博士生及其业界大佬导师为矩阵乘法引入了一种基于学习的算法,该算法具有一个有趣的特性——需要的乘加运算为零。在来自不同领域的数百个矩阵的实验中,这种学习算法的运行速度是精确矩阵乘积的 100 倍,是当前近似方法的 10 倍。 矩阵乘法是机器学习中最基础和计算密集型的操作之一。因此,研究社区在高效逼近矩阵乘法方面已经做了大量工作,比如实现高速矩阵乘法库、设计自定义硬件加速特定矩阵的乘法运算、计算分布式矩阵乘法以及在
虽然人工智能和机器学习为企业提供了充分的可能性来改善其运营并最大化其收入,但却没有“免费午餐”这样的东西。
1.Finite Scalar Quantization: VQ-VAE Made Simple
大家好,我是Jim Farenzi ,今天和我的同事Benhant一起向大家介绍最新的Elastic Search和Lucene向量搜索功能。今天我们将深入探讨Elastic Search作为向量数据存储的历史,以及我们在该领域中实现的一些最新公告。
在我们了解了需要解决的机器学习问题的类型之后,我们可以开始考虑搜集来的数据的类型以及我们可以尝试的机器学习算法。在这个帖子里,我们会介绍一遍最流行的机器学习算法。通过浏览主要的算法来大致了解可以利用的方法是很有帮助的。 可利用的算法非常之多。困难之处在于既有不同种类的方法,也有对这些方法的扩展。这导致很快就难以区分到底什么才是正统的算法。在这个帖子里,我希望给你两种方式来思考和区分在这个领域中你将会遇到的算法。 第一种划分算法的方式是根据学习的方式,第二种则是基于形式和功能的相似性(就像把相似的动物归为一类
图 2展示了训练数据的分布,图 3~6是迭代过程中分类的变化情况,迭代完成后的码本为
可利用的算法非常之多。困难之处在于既有不同种类的方法,也有对这些方法的扩展。这导致很快就难以区分到底什么才是正统的算法。在这个帖子里,我希望给你两种方式来思考和区分在这个领域中你将会遇到的算法。 第一
在我们了解了需要解决的机器学习问题的类型之后,我们可以开始考虑搜集来的数据的类型以及我们可以尝试的机器学习算法。在本文中,小编会介绍一遍最流行的机器学习算法。通过浏览主要的算法来大致了解可以利用的方法是很有帮助的。 可利用的算法非常之多。困难之处在于既有不同种类的方法,也有对这些方法的扩展。这导致很快就难以区分到底什么才是正统的算法。在本文中,小编希望给你两种方式来思考和区分在这个领域中你将会遇到的算法。 第一种划分算法的方式是根据学习的方式,第二种则是基于形式和功能的相似性(就像把相似的动物归为一类一
人工智能风暴袭来,机器人、自动驾驶汽车这样的嵌入式设备也热度渐长。毫无疑问,现在,嵌入式设备也需要高效的神经网络加持。
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础
论文地址: http://arxiv.org/pdf/2212.02350v1.pdf
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。
神经网络已经把先验概率包含进去了,比如尽量使训练样本和测试样本的正反例比例差不多,否则模型不准。把所有样本先打乱,就是保证前面所说的。
高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础、线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。
不知道多少人还记得《是"塔"!是"塔"!就是"它",我们的双塔!》那篇,那篇介绍了国内外各个大厂做召回的用的双塔模型,其中提到一篇《Embeding-based Retrieval in FaceBook Search》,还跟大家强烈建议,该篇必读,不知道有多少炼丹师认真读了?什么?你还没读!没关系,十方今天就给大家解读这篇论文。
导读:在机器学习领域里,不存在一种万能的算法可以完美解决所有问题,尤其是像预测建模的监督学习里。
在机器学习领域里,不存在一种万能的算法可以完美解决所有问题,尤其是像预测建模的监督学习里。 比方说,神经网络不见得比决策树好,同样反过来也不成立。 最后的结果是有很多因素在起作用的,比方说数据集的大小
机器学习领域有一条“没有免费的午餐”定理。简单解释下的话,它是说没有任何一种算法能够适用于所有问题,特别是在监督学习中。 例如,你不能说神经网络就一定比决策树好,反之亦然。要判断算法优劣,数据集的大小和结构等众多因素都至关重要。所以,你应该针对你的问题尝试不同的算法。然后使用保留的测试集对性能进行评估,选出较好的算法。 当然,算法必须适合于你的问题。就比如说,如果你想清扫你的房子,你需要吸尘器,扫帚,拖把。而不是拿起铲子去开始挖地。 大的原则 不过,对于预测建模来说,有一条通用的原则适用于所有监督学习算法。
导读:在机器学习领域里,不存在一种万能的算法可以完美解决所有问题,尤其是像预测建模的监督学习里。 所以,针对你要解决的问题,最好是尝试多种不同的算法。并借一个测试集来评估不同算法之间的表现,最后选出一
企业面临的问题种类繁多,用于解决这些问题的ML模型种类繁多,因为有些算法比其他算法更擅长处理特定类型的问题。因此,我们需要清楚地了解每种ML模型的优点,今天我们列出了10种最流行的AI算法:
机器学习无疑是现在数据分析领域的一个重要内容,凡事从事IT工作领域的人都在平时的工作中或多或少的会用到机器学习的算法。 机器学习有很多算法,不过大的方面可分为两类:一个是学习的方式,一个是算法的类似性。 学习方式: 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 算法的主要学习方式
视频编码利用信号的信息冗余来降低数据率。无损编码依赖于:差分预测编码、变换、熵编码。有损编码通过添加量化过程来进一步提高压缩效率。
基于文本的语言模型如BERT、RoBERTa和GPT-3,借助Transformer的春风,近年来取得了巨大的进步。
AI 科技评论按:在神经网络的成功的带动下,越来越多的研究人员和开发人员都开始重新审视机器学习,开始尝试用某些机器学习方法自动解决可以轻松采集数据的问题。然而,在众多的机器学习算法中,哪些是又上手快捷
AI 研习社按:在神经网络的成功的带动下,越来越多的研究人员和开发人员都开始重新审视机器学习,开始尝试用某些机器学习方法自动解决可以轻松采集数据的问题。然而,在众多的机器学习算法中,哪些是又上手快捷又
本文共3800字,建议阅读6分钟。 选什么算法?本文为你梳理TOP10机器学习算法特点。
人工智能方法在信号处理许多领域的普遍应用导致对底层神经网络(NN)的高效分配、训练、推理和存储的需求不断增加。为此,需要寻求有效的压缩方法,提供最小的编码率的同时,神经网络性能指标(例如分类精度)不会降低。
作者 | 唐洁 责编 | 何永灿 通过深度学习技术,物联网(IoT)设备能够得以解析非结构化的多媒体数据,智能地响应用户和环境事件,但是却伴随着苛刻的性能和功耗要求。本文作者探讨了两种方式以便将深度学习和低功耗的物联网设备成功整合。 近年来,越来越多的物联网产品出现在市场上,它们采集周围的环境数据,并使用传统的机器学习技术理解这些数据。一个例子是Google的Nest恒温器,采用结构化的方式记录温度数据,并通过算法来掌握用户的温度偏好和时间表。然而,其对于非结构化的多媒体数据,例如音频信号和视觉图像则显得
这篇文章[1]提出了一个通用的变换编码框架,用于提升假定使用标量量化的端到端的非线性变换编码的率失真性能。结合任意可微的感知度量,这个框架可以用于优化任意可微的分析变换和综合变换对。
【磐创AI导读】:对于想要了解机器学习的新手,本文为大家总结了数据科学家最经常使用的十大机器学习算法来帮助大家快速入门。如果喜欢我们的文章,欢迎点赞、评论、转发到朋友圈~想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
今天我们来介绍一下图片检索技术,图片检索就是拿一张待识别图片,去从海量的图片库中找到和待识别图片最相近的图片。这种操作在以前依靠图片名搜图的时代是难以想象的,直到出现了CBIR(Content-based image retrieval)技术,依靠图片的内容去搜图。比较常见的图搜平台有百度、谷歌、拍立淘等,有些图搜技术已经能达到非常不错的效果。接下来我们做个测试,给出一个柯基宝宝的图片,分别用三家搜索引擎进行搜索:
随着神经网络的发展,embedding的思想被广泛的应用在搜推广、图像、自然语言处理等领域,在实际的工业场景中,我们常常会遇到基于embedding进行文本、图像、视频等物料的相关内容检索问题,这类问题通常要求在几毫秒的时间内完成百万甚至亿级别候选物料上的检索。 在这类问题中,主要需要考虑的三个问题是速度、内存以及准确性,其中速度是必须要解决的问题,同时我们希望能在保证速度的基础上,尽可能的提升准确率,降低内存占用。因此可以想到,我们是不是可以通过一定的方法,利用内存和准确率来换取查询速度的提升。 Faiss是由FacebookAI团队开发的向量检索库,提供了多种向量查询方案,可以实现在亿级别候选物料上的毫秒级查询,是目前最主流的向量检索库。在Faiss中,把具体的查询算法实现称为索引,由于faiss中提供了多种类型的索引,因此了解其中不同索引索引的实现方式对于我们的应用就尤为关键。
程序员Scott MacDonald做了一个很有趣的项目----骰子作画。 他用黑底白点的骰子。 模拟出一张人像照片。 把图像放大,就可以看得更清楚。 他一共用了2500多颗骰子。 最后的成品就是这样
根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 1.监督式学习:
HNSW 是一种功能强大且灵活的存储和搜索向量的方法,但它需要大量内存才能快速运行。例如,查询 100 万个 768 维度的 float32 向量大约需要 3GB 的 RAM。一旦开始搜索大量向量,这将变得非常昂贵。通过字节量化可以节省大约 75% 的内存。Lucene 以及 Elasticsearch 早已支持字节向量的索引构建,但这些向量的构建一直是用户的责任。这种情况即将改变,因为我们在 Lucene 中引入了 int8 标量量化。
在我们之前的博客中,我们详细介绍了Lucene中标量量化的实现。我们还探讨了两种特定的量化优化。现在,我们来探讨这个问题:在Lucene中,int4 量化是如何工作的,以及它是如何对齐的?
大多数嵌入模型输出的是 float32 向量值。虽然这提供了最高的精度,但对于向量中实际重要的信息来说,这是浪费的。在给定的数据集中,嵌入向量的每个维度都不需要所有 20 亿种可能的值。尤其是在维度较高(如 386 维及以上)的向量中,这种情况更为明显。量化允许以有损的方式对向量进行编码,从而在略微降低精度的同时大大节省空间。
呜啦啦啦啦啦啦啦大家好,拖更的AI Scholar Weekly栏目又和大家见面啦!
任何一张图片都可以用骰子模拟出来,算法非常简单:将图片分成若干个区域,每个区域经过计算以后,用1-6之间的一个整数表示,代表骰子的一个面。这种将连续的量转化成不连续的整数的算法,属于vector quantization(矢量量化)的一个应用。
说到语音识别、语音翻译、图像识别、人脸识别等等,现在已经非常非常非常普及了,看过‘最强大脑’的朋友,也应该对‘小度’这个机器人有所了解,战胜国际顶尖的‘大脑’- 水哥,(PS:内幕不知),那么今天,我们来看下关于语音识别,是如何做到的,Java又是如何识别语音的?如何转换语音?
K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
领取专属 10元无门槛券
手把手带您无忧上云