首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

这个可以动态更新的课程表,我用数据透视表做的!

- 分析 - 左边的切片器,控制中间和右边的表格,数据动态更新。 右边的表格,就是普通的数据透视表,这一步很好解决。...中间的表格,有两个问题: 一是在数据透视表的值区域显示文本,内容随切片器动态更新; 一是有一个标准的格式,“午间休息”把表格上下拆开了。...- 任务1 - 数据透视表值区域显示文本 参照大海老师《你可能从来没用透视表干过这事!轻松搞定2020年休假月历!》的文章。...- 任务2 - 将数据透视表转换为公式 第一步:选中数据透视表,在”OLAP工具“中选择“转换为公式”。 第二步:移动表格的位置,设置表格格式。...最后,右边插入数据透视表,设置切片器的”报表连接“。 实验成功,成就满满。 哈哈,以后各种文字也可以在表格任意摆放,动态更新了。

3.8K20

数据透视表:动态计算近N天数据变化

在Excel中,我们可以使用Power Pivot和数据透视表相结合的方法来动态计算近N天的数据变化的情况。比如,我们按选择一个日期,计算当前日期的前7天、前15天,前30天等近期的数据变化情况。...如图所示: 这种方法不仅可以提高数据透视表的效率,还可以打造更多的分析的维度。 初始的数据源和数据模型如下图所示: 在这个模型中,我们新建一个日期表,用来筛选订单表中的下单日期。...为了当我们选择一个日期的时候,在我们透视表中和数据透视图中能显示选择的近N天的数据,我们还需要做两件事: (1)新建一个用于切片器的近N天的表。如图所示。...接着插入一个数据透视图,图表类型修改为拆白线图,x轴的日期列为切片日期表中的日期列,度量值为salestotal。...如图所示: 全部勾选连接到数据透视表和数据透视图,这样就能正常地工作了。 但是还有一个问题就是图表的标题要随着选择的近N天的值变化,可以结合度量值,CUBE类函数以及文本框和公式的方法来解决。

1.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据透视表入门

    今天跟大家分享有关数据透视表入门的技巧! 数据透视表是excel附带功能中为数不多的学习成本低、投资回报率高、门槛低上手快的良心技能!...直接看本文的案例数据 (一定要注意了数据透视表的原数据结构一定要是一维表格,无合并单元格。) ?...然后我们将利用几几步简单的菜单操作完成数据透视表的配置环境: 首先将鼠标放在原数据区域的任一单元格,选择插入——透视表; 在弹出的菜单中,软件会自动识别并完成原数据区域的选区工作。 ?...你需要做的是定义好数据透视表的输出位置: 新工作表:软件会为透视表输出位置新建一个工作表; 现有工作表:软件会将透视表输出位置放在你自定义的当前工作表目标单元格区域。...此时你选定的透视表存放单元格会出现透视表的 布局标志,同时在软件右侧出现数据透视表字段菜单,顶部菜单栏也会自动出现数据透视表工具菜单。

    3.6K60

    用Python进行数据分析之数据透视表

    前言 在节前的一次推送中,我写了如何使用FME来进行进行数据透视的相关分析。今天来填之前挖的坑,使用Python来完成同样的数据分析。只不过,Py实现起来,更简洁!...数据透视表的强大,这里就不再赘述了,Python语言的优势与缺点,这里也不再介绍。 只说一句:Python,绝对值得学习,非常适合非计算机专业的人来用! 比如,俺们搞GIS的!...实现方式 下面就来介绍下,怎么用Python来实现! 代码 先来看看代码吧! ? 思路 导入需要的包 这里用到的包,就一个:pandas!...这个库超级强大,很多的数据分析都可以通过这个包来做(之前参加了一半的数据分析学习小组 ? ,大多数作业都可以通过这个库完成)。 读取数据 将磁盘中的数据,读取出来,存到名为df的变量中!...数据透视 这一行代码,是本次处理的核心代码!完成了数据透视的分析,并将空值填成了0。 写出数据 数据处理完成,并不是终点,还要写出来 ? ! 处理前后的数据 ?

    1.1K30

    用FME进行数据分析之数据透视表

    什么是数据透视表? Excel中的解释 数据透视表是计算、汇总和分析数据的强大工具,可助你了解数据中的对比情况、模式和趋势。...百度百科中的解释 数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。...之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。...实现方式 初探:进行分析与交互式验证 在刚看到这个这个处理题目的时候,我就想,这个或许可以用数据透视表来完成。所以在拿到数据后简单分析之后,就丢在Excel中来了一波数据透视! 如下图所示: ?...实施:进行一次编写处处运行的魔板制作 写模板一般都是这个套路:首先理清大致思路,然后进行工具制作。在制作中,再不断的进行细节优化!

    2.5K20

    数据透视表多表合并

    今天跟大家分享有关数据透视表多表合并的技巧!...利用数据透视表进行多表合并大体上分为两种情况: 跨表合并(多个表在同一工作薄内) 跨工作薄合并(多个表分别在不同工作薄内) 跨表合并(工作薄内表合并) 对于表结构的要求: 一维表结构 列字段相同 无合并单元格...在弹出的数据透视表向导中选择多重合并计算数据区域,点击下一步。 选择创建自定义字段,继续点击下一步。 ? 在第三步的菜单中选定区域位置用鼠标分别选中四个表的数据区域(包含标题字段)。...合并步骤: 与工作薄内的表间合并差不多,首先插入——数据透视表向导(快捷键:Alt+d,p) 选择多重合并计算字段——创建自定义字段。 ? 将两个工作薄中的四张表全部添加到选定区域。 ? ?...然后选中其中一个字段的及数据区域用鼠标拖动位置(选中销售金额就往右侧拖动,如果选中销售数量那就往左拖动。) ? 透视表的样式可以通过套用表格样式随意调整。

    9.7K40

    Python数据透视表与透视分析:深入探索数据关系

    数据透视表是一种用于进行数据分析和探索数据关系的强大工具。它能够将大量的数据按照不同的维度进行聚合,并展示出数据之间的关系,帮助我们更好地理解数据背后的模式和趋势。...在Python中,有多个库可以用来创建和操作数据透视表,其中最常用的是pandas库。 下面我将介绍如何使用Python中的pandas库来实现数据透视表和透视分析。...df = pd.read_csv('data.csv') # 根据实际情况修改文件路径和格式 3、创建数据透视表:使用pandas的pivot_table()函数可以轻松创建数据透视表。...:通过创建数据透视表,我们可以深入探索不同维度之间的数据关系,并对数据进行分析。...下面是一些常用的操作: 筛选数据:可以基于数据透视表中的特定值或条件筛选出我们感兴趣的数据。

    24210

    数据科学小技巧3:数据透视表

    数据透视表是Excel里面常用的分析方法和工具,通过行选择,指定需要分组指标;通过列选择,指定需要计算指标,最后在指定需要聚合计算类型,比方说是计数,还是求均值,还是累加和等等。...第三个数据科学小技巧:数据透视表。前面的数据科学小技巧,可以点击下面链接进入。...数据科学小技巧系列 1数据科学小技巧1:pandas库apply函数 2数据科学小技巧2:数据画像分析 我们用Python语言和pandas库轻松实现数据透视表功能。...第二步:导入数据集 ? 第三步:数据检视 ? 第四步:数据透视表 ?...我们使用pandas库的pivot_table函数,重要参数设置: index参数:指定分组指标 values参数:指定计算的指标 aggfunc参数:指定聚合计算的方式,比方说求平均,累加和 数据透视表结果

    1.1K30

    【数据处理包Pandas】数据透视表

    import numpy as np import pandas as pd 一、通过多级索引创建数据透视表 利用多级索引产生学生成绩表: r_index = pd.MultiIndex.from_product...df2.reindex(columns=[('富强','数学'),('李海','英语'),('王亮','数学'),('富强','语文')]) 二、数据透视表   数据透视表相当于在行和列两个维度上进行分组...数据透视表的效果可以通过groupby来实现,但有时候直接使用pivot_table方法建立数据透视表可能更方便些,而且额外提供了汇总功能。...第1个参数是data参数,提供了绘制数据透视表的数据来源,可以是整个 DataFrame,也可以是 DataFrame 的子集;index和columns参数指定了行分组键和列分组键;values指定想要聚合的数据字段名...(df,index='年份',columns='课程',values=['富强','李海','王亮'],aggfunc='max') 与上面数据透视表等价的groupby写法: df.groupby([

    7400

    二维表转一维表用多重数据透视?弱爆了!

    小勤:部门里有个表烦屎了,交上来的都是二维表,我每次都要转成一维表才好跟其他数据合并分析。 大海:呵呵。二维表是出了名的貌似很好看,但不方便分析的表。你现在是怎么干的?...小勤:多重数据透视啊,你教的。...你看: 第一步:Alt+D+P调出数据透视表向导窗口,选择【多重合并计算区域】 第二步:选择【创建单页字段】 第三步:选择和添加要转换的二维表区域 第四步:在生成的透视表里双击总计数,就搞定了。...如果要经常用,数据经常更新的话还真麻烦。 小勤:就是啊。刚开始用的时候还蛮有成就感的,现在要天天转啊,又不能自动刷新,新的数据上来还得重新搞一遍。快要疯了。...看着: 第一步:【新建查询】-【从文件】-【从工作簿】 第二步:选择数据所在文件,【导入】 第三步:选择数据所在的表,【编辑】 第四步:选中原来的“行”那一列,【转换】-【逆透视】-【逆透视其他列

    81220

    在pandas中使用数据透视表

    Python大数据分析 记录 分享 成长 什么是透视表?...经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视表可以快速抽取有用的信息: pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...下面拿数据练一练,示例数据表如下: 该表为用户订单数据,有订单日期、商品类别、价格、利润等维度。

    3K20

    对比excel,用python实现逆透视操作(宽表变长表)

    大家好 最近看到群友们在讨论一个宽表变长表的问题,其实这类需求也很常见于我们日常的数据处理中。综合群友们的智慧,今天我们就来看看excel与python如何实现这个需求吧!...第一步:选中数据,然后在菜单栏-数据-点击来自表格/区域 [format,png] 选中数据-来自表格 第二步:创建表的时候,根据实际情况选中是否包含标题(本例不包含) [format,png] 创建表...,在原始表出现了 表1的页签,里面正是我们期望的逆透视结果,搞定!...import pandas as pd # 读取数据 df = pd.read_excel(r'0927测试数据.xlsx', header=None) df [format,png] 数据预览 # 直接逆透视...这种解决方案,笔者在之前给朋友处理过,不过看到这题的时候我居然用的是另外一种更复杂的解决方法,简直秀逗了。

    1.6K50

    在pandas中使用数据透视表

    什么是透视表? 经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?...首先导入数据: data = pd.read_excel("E:\\订单数据.xlsx") data.head() 接下来使用透视表做分析: 计算每个州销售总额和利润总额 result1 = pd.pivot_table

    2.8K40
    领券