使用预训练模型的好处 已提供预训练模型来支持需要执行情绪分析或图像特征化等任务但没有资源获取大型数据集或训练复杂模型的客户。使用预训练模型可以让您最有效地开始文本和图像处理。...目前可用的模型是用于情感分析和图像分类的深度神经网络 (DNN) 模型。所有四个预训练模型都在 CNTK 上进行了训练。...预训练模型通过安装程序作为机器学习服务器或SQL Server 机器学习的可选组件进行安装。...指定要安装的组件时,添加至少一种语言(R Server 或 Python)和预训练模型。需要语言支持。这些模型不能作为独立组件安装。 设置完成后,验证模型在您的计算机上。...预训练模型是本地的,在您运行 setup 时分别添加到 MicrosoftML 和 microsftml 库中。
光流正则化:利用全局STAG轨迹,通过与预计算的光流场之间的关联,确保在单次前向传递中保持一致的运动。 4. 训练和推理 整体目标:结合MSE损失、光流正则化和深度正则化来训练模型。...深度先验:评估没有深度监督时模型的性能变化。 光流先验:评估没有光流监督时模型的运动一致性。 4. 训练和推理 训练目标:结合MSE损失、光流正则化和深度正则化进行训练。...正则化策略:利用校准的深度和光流先验来解决单目视频中的深度歧义和运动不确定性问题,通过深度和光流正则化来训练模型。...从图像开始,我们的方法将用于创建粗缝纫图案的预训练图像到缝纫图案生成模型与用于生成多视图图像的预训练多视图扩散模型相结合。使用基于生成的多视图图像的可区分服装模拟器进一步完善缝纫图案。...从单视图图像出发,通过预训练的模型生成服装缝纫图案。 使用多视图扩散模型产生多视图图像,用于优化3D服装。 利用可微分的服装模拟器优化服装图案和物理参数。 3.
相机运动估计:通过估计相机运动来消除背景上的光流以及轨迹;假设相邻的两帧图像之间的关系可以用一个投影变换矩阵来描述,即后一帧图像是前一帧图像通过投影变换得到的;为了准确估计投影变换,采用了SURF特征以及光流特征来获得匹配点对...此方法有以下几个优点: 在先前工作的基础上,使用RNN而不是基于流的设计;使用编码器-解码器架构进行行为识别;提出了用于行为识别的端到端的可训练架构。...本文提倡使用无监督的架构来为所有的帧生成光流。 光流可认为是一个图像重建问题。给定一对相邻的帧L1和L2作为输入,文中的CNN生成流场V。...此外为了利用预训练的2D模型,作者在3D网络第三维中重复2D预训练的权重。空间流的输入包含按时间维度堆叠的帧,而不是base two stream架构中的单个帧。...,而骨架信息作为输入往往利用不上预训练模型。
VL-BERT: Pre-training of Generic Visual-Linguistic Representations 该文发表于ICLR 2020,是最早提出图像和文本联合预训练模型的论文之一...研究员提出了一种新的通用的多模态预训练模型VL-BERT,该模型采用简单而强大的Transformer模型作为主干网络,并将其输入扩展为同时包含视觉与语言输入的多模态形式,适用于绝大多数视觉语义下游任务...为了让VL-BERT模型利用更为通用的特征表示,研究员在大规模图片描述生成数据集Conceptual Captions中进行VL-BERT的预训练,实验证明此预训练过程可以显著提高下游的视觉语义任务的效果...Transfer for Label Propagation with Limited Annotated Data 该论文提出了一种新的半监督学习/迁移学习/小样本学习范式,该范式的核心是利用无监督预训练方法来获得初始图像特征...与传统的图像重建信号相比,针对纹理缺失严重的室内场景,利用稀疏到稠密的光流估计方法获取稳定的光流估计,并将光流信息输入相机估计网络克服相机运动复杂的难题,从而实现了深度布局更为复杂多样的室内场景下的稳定的深度估计
(例如,人像分割、光流、关键点检测等)。...神经网络权重使用合成数据进行预训练,并使用可微关键点、分割和二次投影误差分别针对检测到的2D关键点、2D分割和2D光流的自监督缺失驱动(self-supervised losses driven)进行微调...我们展示了最先进的2D关节、光流和2D人像分割模型是如何用于推理出自认环境下视频中密集的3D人体结构的,而这些工作是难以通过手动操作来完成。...相比之下,我们的基于学习的MOCAP模型通过预训练(合成数据)可在测试时提供良好的姿态初始化。此外,自监督适应模型比预训练的非适应模型的3D重建误差低。...许多最近研究使用深度神经网络和大型监督训练集,对于给定给定RGB图像,学习直接复归为3D人体姿势。
在将人像分割技术应用到实际业务场景时,经常会面临一些挑战,很难达到理想的效果和商用级别的要求,比如下面这些问题: 由于拍摄情况复杂多样,图像数据组成往往很复杂,比如存在多尺度、图像叠加、多姿态等情况,这对训练模型前的数据处理环节带来很大的挑战...发布基于光流算法的视频级别的分割后处理方案,针对移动端小模型分割效果不理想的问题,有显著效果。...PaddleSeg开源了在大规模人像数据上训练过的5个预训练模型,满足多种使用场景的需求,这些模型简单经过Fine-tune即可训练出自己的人像分割模型。 ?...,最终生成的预训练模型大小仅187K!...执行以下脚本即可下载HumanSeg预训练模型: python pretrained_weights/download_pretrained_weights.py 视频光流后处理方案,视频 级别实时分割处理的利器
简介双流CNN通过效仿人体视觉过程,对视频信息理解,在处理视频图像中的环境空间信息的基础上,对视频帧序列中的时序信息进行理解,为了更好地对这些信息进行理解,双流卷积神经网络将异常行为分类任务分为两个不同的部分...,我们选用卷积神经网络对获得的数据样本进行特征提取和分类,我们将得到的单帧彩色图像与单帧光流图像以及叠加后的光流图像作为网络输入,分别对图像进行分类后,再对不同模型得到的结果进行融合。...对于空间信息,直接使用RGB单帧图像进行训练和预测,预训练数据集和动作视频数据集的模式相差不多,但对于时序信息的光流特征,光流场的模式与普通RGB图像有所差异,所以对光流图像进行上一节中所述的处理,将光流矢量投影到...在之后的实验中,发现通过RGB图像预训练的模型对光流图像的训练也同样适用。...另外,由于在ImageNet上预训练了模型,需要调小模型训练初始的学习率,并根据训练的迭代次数对学习率实时进行调整,随着迭代次数的增多,减小学习率。
,并寻求数据效率高的替代方法来替代基于分类的预训练。...结果:在所有任务中,不管是监督还是无监督学习,即使仅用原来图像数量的1/10,VirTex匹配或优于使用ImageNet进行预训练的模型。...从二维图像估计人体三维网格是一项重要的任务,应用于增强现实与人机交互等。...本文方案:提出一种model-free的三维人体网格估计框架,命名为DecoMR,它显式地建立了网格与局部图像特征在UV空间(即用于三维网格纹理映射的二维空间)中的密集对应关系。...实验显示上述新方法大大改进了无监督光流的精度,甚至在KITTi 2015数据集上与有监督光流算法 FlowNet2 比肩,算法也更加简单。
(2)为了解决图像不对齐情况下手动图像切片失效的问题,一些论文利用一些先验知识先将行人进行对齐,这些先验知识主要是预训练的人体姿态(Pose)和骨架关键点(Skeleton) 模型。...对于输入的一张行人图片,有一个预训练好的骨架关键点提取CNN(蓝色表示)来获得14个人体关键点,从而得到7个ROI区域,其中包括三个大区域(头、上身、下身)和四个四肢小区域。...AMOC输入的包括原始的图像序列和提取的光流序列。通常提取光流信息需要用到传统的光流提取算法,但是这些算法计算耗时,并且无法与深度学习网络兼容。...为了能够得到一个自动提取光流的网络,作者首先训练了一个运动信息网络(Motion network, Moti Nets)。这个运动网络输入为原始的图像序列,标签为传统方法提取的光流序列。...通过AMOC网络,每个图像序列都能被提取出一个融合了内容信息、运动信息的特征。网络采用了分类损失和对比损失来训练模型。融合了运动信息的序列图像特征能够提高行人重识别的准确度。
Generic Visual-Linguistic Representations 论文链接:https://arxiv.org/pdf/1908.08530.pdf 该文发表于ICLR 2020,是最早提出图像和文本联合预训练模型的论文之一...研究员提出了一种新的通用的多模态预训练模型VL-BERT,该模型采用简单而强大的Transformer模型作为主干网络,并将其输入扩展为同时包含视觉与语言输入的多模态形式,适用于绝大多数视觉语义下游任务...为了让VL-BERT模型利用更为通用的特征表示,研究员在大规模图片描述生成数据集Conceptual Captions中进行VL-BERT的预训练,实验证明此预训练过程可以显著提高下游的视觉语义任务的效果...(BMUF)算法,在线性加速深度学习模型训练的同时,保持模型的准确率。...与传统的图像重建信号相比,针对纹理缺失严重的室内场景,利用稀疏到稠密的光流估计方法获取稳定的光流估计,并将光流信息输入相机估计网络克服相机运动复杂的难题,从而实现了深度布局更为复杂多样的室内场景下的稳定的深度估计
这篇论文提出了一种名叫ControlNet的模型,只需给预训练扩散模型增加一个额外的输入,就能控制它生成的细节。...这里的输入可以是各种类型,包括草图、边缘图像、语义分割图像、人体关键点特征、霍夫变换检测直线、深度图、人体骨骼等,所谓的“AI会画手”了,核心技术正是来自于这篇文章。...它的思路和架构如下: ControlNet先复制一遍扩散模型的权重,得到一个“可训练副本”(trainable copy)。 相比之下,原扩散模型经过几十亿张图片的预训练,因此参数是被“锁定”的。...由于现有的单光子相机的光流估计技术在这个范围内失效,因此,这篇论文开发了一种光流探测理论,借鉴了随机微积分的思想,以从单调递增的光子检测时间戳流中重建像素的时间变化光流。...这篇论文不仅提出了一个当前最大的图像分割数据集,在11M图像上拥有超过10亿个遮罩(mask),而且为此训练出了一个SAM模型,可以快速分割没见过的图像。
尽管目前已经在单图像3D姿势和动作估计方面取得了进展,但由于缺少用于训练的真实的3D运动数据,因此现有的基于视频的SOTA方法无法产生准确且自然的运动序列。...代码和预训练模型已经开源: https://github.com/mkocabas/VIBE ? 引言 从单幅图像估计3D人体姿势和动作方面已经取得了巨大的进展。...在训练过程中,“ VIBE”将未标注的图像作为输入,并使用在单个图像的人体姿态估计任务上预训练的卷积神经网络去预测SMPL人体模型参数。...对每一帧使用一个预训练的模型去提取特征,接下来使用双GRU组成的编码器去训练。然后特征会被用于回归SMPL人体模型的参数。...未来的工作,作者会探索使用视频来监督单帧的方法,比如看看光流信息是否可以帮助提升结果。 原文链接: https://arxiv.org/abs/1912.05656 【end】
五、姿态估计 1.MPII人体模型数据集 MPII Human Shape 人体模型数据是一系列人体轮廓和形状的3D模型及工具。模型是从平面扫描数据库 CAESAR 学习得到。...2.MPII人类姿态数据集 MPII 人体姿态数据集是用于评估人体关节姿势估计的最先进基准。该数据集包括大约 25,000 张图像,其中包含超过 40,000 个带有注释身体关节的人。...4.KITTI-2015光流数据集 Flow 2015 基准测试包含 200 个训练场景和 200 个测试场景(每个场景 4 幅彩色图像,以无损 png 格式保存)。...5.KITTI-2015场景流数据集 Sceneflow 2015 基准测试包含 200 个训练场景和 200 个测试场景(每个场景 4 幅彩色图像,以无损 png 格式保存)。...鉴于大量的训练数据,该数据集应允许训练复杂的深度学习模型,以完成深度补全和单幅图像深度预测的任务。此外,该数据集提供了带有未发布深度图的手动选择图像,作为这两个具有挑战性的任务的基准。
常用数据库 【数据集整理】人体行为识别和图像识别 行为识别的数据库比较多,这里主要介绍两个最常用的数据库,也是近年这个方向的论文必做的数据库。 1....研究进展 如今人体行为识别是计算机视觉研究的一个热点, 人体行为识别的目标是从一个未知的视频或者是图像序列中自动分析其中正在进行的行为。...这里还可以使用 目标检测 去除背景光溜,只保留人体区域的光流。 3....然后对于视频图像(spatial)和密集光流(temporal)分别训练CNN模型, 两个分支的网络分别对动作的类别进行判断, 3....包括 跨模态预训练,正则化,数据增强等。 4.
面向AR/VR场景的人体姿态迁移 代表性论文:基于人体本征光流的姿态转换图像生成 本文主要关注人体姿态转移问题,即在给定一幅包含一个人的输入图像和一个目标姿态的情况下,生成同一个人在目标姿态下的图像...作者提出利用人体本征光流描述不同姿态间的像素级对应关系。 为此,他们设计了一个前馈神经网络模块,以原始姿态和目标姿态作为输入,迅速对光流场进行估计。...考虑到真实光流数据难以获取,他们利用3D人体模型拟合图像中的人体姿态,生成对应姿态变化的光流场数据,用于模型训练。...在该光流预测模块的基础上,他们设计了一个图像生成模型,利用本征光流对人体的外观特征进行空间变换,从而生成目标姿态下的人体图像。...Inflated 3D/Non-local等流行的网络结构,支持UCF-101、Something-Something、Kinetics、THUMOS14、ActivityNet、AVA等视频数据集,并提供相关的预训练模型
AI 科技评论按:本文发布于 Google AI Blog,介绍了 Google 一项最新研究成果——自监督学习下的视频着色模型,还可以直接用于视频目标跟踪和人体姿态估计。...为了训练该系统,谷歌的研究人员们使用了来自 Kinetics 数据集的视频,这是一个大型且公开的视频数据集,里边的视频主要与日常活动有关。...要模型学会从给出的单帧参考图像中复制到正确颜色,这就要求模型能够隐式地学会图像帧之间的区域映射关系。这迫使模型习得可用于目标跟踪的显式机制。...虽然着色模型的精确度还不能超过监督学习模型,但是它很好地学会了跟踪视频对象(Video segments)和人体姿态(Human pose),并且性能要好于最新的基于光流的模型方法(https://arxiv.org...对于不同运动类型的追踪性能测试表明,对于许多自然复杂性(例如动态背景、快速运动和遮挡)场景,他们的模型要优于光流模型。请阅读论文以获得更多的详情。
光流在行为识别模型中很有效,并不是因为它能够捕捉运动信息,而主要是因为光流对图像外观(appearance)的不变性。...用行为识别分类误差来训练(fine tune)光流比起用EPE误差来能获得更好的行为识别效果。 使用行为识别分类误差来训练得到的光流,与普通的光流的差异主要集中在人体的内部与边缘区域。...为何要将光流作为行为识别模型的输入? 通常认为光流代表着视频的运动或时序信息。在行为识别的数据集(如UCF101) 中,虽然有很多动作尽使用单帧图像就可以判别,还是有一些动作是依赖于时序信息的。...这个观点可以通过实验以及一些相关工作来佐证: (1)通过变动图像表观信息,分别观察以flow以及rgb图像作为输入的行为模型的性能 这个实验中训练照常,但测试时修改图像的颜色,如下图所示意: ?...光流的准确性与行为识别的准确性相关吗? 接下来作者讨论了光流的测评指标对于行为识别模型的有效性。目前有大量的光流算法,包括传统的方法以及这几年基于CNN的方法。
open-mmlab/Amphion MM-Grounding-DINO: 轻松涨点, 数据到评测全面开源 Grounding DINO 是一个统一了 2d 开放词汇目标检测和 Phrase Grounding 的检测预训练模型...COCO-Wholebody SOTA 精度;同时对手部关键点精度做了专门优化,非常适合应用于人机交互、可控图像视频生成等场景。...RTMW 模型效果展示 PowerPaint: 第一个高质量的通用图像补全模型 作为第一个高质量通用图像补全模型,PowerPaint 在一个模型中同时支持增加物体、删除物体、AI 扩图等多种不同的图像补全功能...RTMW 新增了 RTMW-m, RTMW-l 等多个尺寸的模型,满足不同应用场景 支持了 PoseAnything 的推理,实现开放姿态检测 支持了暗光人体姿态数据集 ExLPose、3D 全身关键点数据集...目标检测任务 支持了 DSVT ,是目前 LiDAR-based 在 Waymo 数据集上的 SOTA 模型 支持了 Nerf-Det, 将 Nerf 用于辅助检测模型的室内场景 3D 目标检测模型
由于行人在肌肉力量、肌腱和骨骼长度、骨骼密度、重心等方面有一定的差异,基于上述这些差异可以唯一地标注一个人,则利用这些特性能搭建人体运动模型或直接从人体轮廓里提取特征来实现步态识别。...当前,绝大部分的步态数据集都是通过RGB 摄像机采集的,部分步态数据集通过采用红外摄像机来捕获图像,用于克服一些照明极差的环境,而Kinect 这类 3D 体感摄像机能直接输出人体关节位置及姿态,多用于公共场合人体目标易被遮挡的情况...02步态分割 步态分割的作用为从捕获视频序列的图像里分割出人体的步态轮廓,目前常用的方法有帧间差分法、背景减除法和光流法。...• 光流法 光流法是通过借助光流特性检测出运动区域。光流可以表示出像素随时间在图像上的运动趋势,如下图所示。所以光流法可以锁定图像上的所有运动像素,确定目标运动区域,进而实现步态分割。...除了用于诊断病况,步态识别技术还可以成为康复医学、矫形学的一种智能工具,协助医生快速分 析相关肌肉与骨骼的活动状况和制定一系列的康复、矫形方案。
AIRX社区 1、Cvpr2020 Code CVPR 2020 论文开源项目合集 https://github.com/amusi/CVPR2020-Code 2、Flownet2 借助深层网络进行光流估计...https://github.com/mkocabas/VIBE 8、Ghostnet 在ImageNet上提供了TensorFlow代码和GhostNet的预训练模型 https://github.com...在训练过程中,EpipolarPose从多视图图像中估计出二维位姿,然后利用epipolar geometry获得三维位姿,利用camera geometry训练出三维位姿估计器。...对于每组结果,我们首先显示输入图像,然后显示ground truth、全监督模型和self - supervised模型输出。...https://github.com/skanti/Scan2CAD 23、Flownet2 Docker 包含一个Dockerfile和脚本,以构建和运行神经网络在Docker容器中进行光流估计,还提供了一些示例数据来测试网络
领取专属 10元无门槛券
手把手带您无忧上云