首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Nat. Commun. | 多尺度相互作用网络鉴定疾病治疗机制

今天给大家介绍斯坦福大学Jure Leskovec教授团队在Nature Communications上发表的一篇文章“Identification of disease treatment mechanisms through the multiscale interactome”。在这项工作中,作者构建了一个多尺度相互作用网络,该网络整合了疾病扰动蛋白、药物靶标和生物功能。基于该网络,作者开发了一种随机游走方法,捕获药物作用如何在蛋白质相互作用和生物功能的层次结构中传播。实验结果表明,多尺度相互作用网络可以预测药物疾病的治疗,鉴定与治疗有关的蛋白质和生物学功能,并预测可改变治疗功效和不良反应的基因。另外,仅通过蛋白质之间的相互作用不能对治疗机制进行解释,因为许多药物通过影响被疾病破坏的生物功能来治疗疾病,而不是直接作用于疾病蛋白。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nat. Commun. | 多尺度相互作用网络鉴定疾病治疗机制

    今天给大家介绍斯坦福大学Jure Leskovec教授团队在Nature Communications上发表的一篇文章“Identification of disease treatment mechanisms through the multiscale interactome”。在这项工作中,作者构建了一个多尺度相互作用网络,该网络整合了疾病扰动蛋白、药物靶标和生物功能。基于该网络,作者开发了一种随机游走方法,捕获药物作用如何在蛋白质相互作用和生物功能的层次结构中传播。实验结果表明,多尺度相互作用网络可以预测药物疾病的治疗,鉴定与治疗有关的蛋白质和生物学功能,并预测可改变治疗功效和不良反应的基因。另外,仅通过蛋白质之间的相互作用不能对治疗机制进行解释,因为许多药物通过影响被疾病破坏的生物功能来治疗疾病,而不是直接作用于疾病蛋白。

    03

    Network在单细胞转录组数据分析中的应用

    面向单细胞的技术革命,让我们得以进入新的研究层面,但也对传统的分析方法提出了一系列的挑战。单细胞技术正在弥补分子生物学和组织生物学之间的鸿沟,进入高通量时代以来,这项技术所揭示的不是单一元素的信息,而是在单细胞层面揭示某种系统关系:DNA,RNA,ATAC等。我们知道,在系统中,关键要素除了来自元素本身(基因,转录本等生物小分子)之外,还来自元素之间的关系。虽然作为领域起源的社会网络分析可以追溯到20世纪30年代,图论可以上溯几个世纪,但网络科学的迅速崛起与普及只是近几十年的事情。目前,基因调控网络,生物代谢与信号转导网络,蛋白质互作网络作为基本的生物分子网络(Biological molecular network )已经在生物信息分析中得到广泛的应用。

    02

    人类长非编码RNA表达数据库,整合9种重要生物学场景(发育、癌症、病毒侵染等)

    近日,由中国科学院北京基因组研究所(国家生物信息中心)国家基因组科学数据中心开发的人类长非编码RNA(long non-coding RNA, lncRNA)表达数据库正式上线。该研究成果以`LncExpDB: an expression database of human long non-coding RNAs`为题在国际学术期刊《核酸研究》(`Nucleic Acids Research`)在线发表。 `LncRNA`通过复杂多样的分子机制发挥重要调控功能,在多个生物学过程以及疾病发生发展中均发挥重要作用。目前,人类基因组中已鉴定出十万多个lncRNA基因,但有功能研究的仅有数千条,因此全面注释lncRNA功能是人类基因组研究的重要内容和巨大挑战。近年来,高通量测序技术的迅速发展促进了正常组织、疾病、胚胎发育、器官分化、病毒侵染、亚细胞区室等多种生物学场景的研究,积累了丰富的组学数据,尤其是转录组测序数据,为从多角度发现和研究lncRNA的生物学功能提供了重要的数据基础与研究思路。 LncExpDB数据库致力于提供多生物学场景的lncRNA表达谱,鉴定具有潜在功能的lncRNA,促进lncRNA的功能实验研究。在LncBook数据库构建的人类lncRNA数据集基础上,研究人员整合CHESS、RefLnc、FANTOM等10余个专业数据库鉴定的lncRNA,基于严格审编标准,获得全面的高质量人类lncRNA参考数据集,包含101,293个基因/33,1244个转录本。LncExpDB数据库进一步整合9种重要生物学场景(正常组织/细胞系、器官发育、植入前胚胎发育、细胞分化、亚细胞定位、外泌体、癌症细胞系、病毒侵染、昼夜节律)的1,977个样本的转录组数据,通过标准化的转录组数据分析流程,系统分析并鉴定每种生物学场景的特征基因(管家基因/组织特异性基因、差异表达基因、节律基因、动态表达基因、亚细胞区室富集基因)集合,共计25,191个特征lncRNA基因和28,443,865对相关的lncRNA-mRNA共表达关系。此外,LncExpDB鉴定了具有表达证据支持的92,016个lncRNA基因,评估了lncRNA的表达水平与表达潜力。

    01

    Nucleic Acids Res. | 生物医学知识文献网站PubTator 3.0

    今天为大家介绍的是美国国立卫生研究院陆致用教授团队的一篇论文。PubTator 3.0是一款结合了最先进人工智能技术的生物医学文献搜索工具,它专注于蛋白质、遗传变异、疾病和化学物质等关键生物医学概念的语义及关联性搜索。该平台已累积提供超过十亿个实体和关系的注释,覆盖约3,600万篇PubMed摘要和600万篇PMC开放获取的全文文章,每周获取最新的相关信息。作者通过一系列实体对比查询展示了PubTator 3.0在文章检索方面的卓越性能,其检索量和前20条结果的精确度均优于PubMed和Google Scholar。此外,整合ChatGPT(GPT-4)的PubTator API显著提升了查询结果的事实性和可验证性。

    01

    Nucleic Acids Res. | 一种灵活的、可解释的、精确的插补未测量基因表达的方法

    今天给大家介绍密歇根州立大学Arjun Krishnan教授等人发表在Nucleic Acids Research上的一篇文章 “A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes”。虽然生物学领域中有超过200万个公开可用的人类微阵列基因表达谱,但这些谱是通过各种平台进行测量的,每个平台都覆盖一组预先定义的、有限的基因。因此,重新分析和整合这一海量数据收集的关键是通过插补未测量基因的表达,在部分测量的微阵列样品中重组整个转录组的方法。目前最先进的插补方法是针对特定平台的样本进行定制的,并依赖于基因-基因关系,不考虑目标样本的生物学背景。本文表明,为每个新的目标样本实时构建的捕获样本-样本关系 (称为样本弹性) 的稀疏回归模型,优于基于固定基因关系的模型。基于三种机器学习算法 (LASSO、k近邻和深度神经网络)、两个基因子集 (GPL96-570和LINCS) 和多个插补任务 (微阵列/RNA-seq数据集内和跨数据集) 的广泛评估表明SampleLASSO是最精确的模型。此外,本文证明了该方法的生物学可解释性:为了插补来自特定组织的一个目标样本,SampleLASSO自动利用了来自同一组织的训练样本。因此,SampleLASSO是一种简单,但强大而灵活的协调大规模基因表达数据的方法。

    01

    为什么选择GSEA分析?和KEGG和GO分析有什么区别?

    但是,一般的差异分析(GO和Pathway)往往侧重于比较两组间的基因表达差异,集中关注少数几个显著上调或下调的基因,这容易遗漏部分差异表达不显著却有重要生物学意义的基因,忽略一些基因的生物特性、基因调控网络之间的关系及基因功能和意义等有价值的信息。而GSEA不需要指定明确的差异基因阈值,算法会根据实际数据的整体趋势, 为研究者们提供了一种合理地解决目前芯片分析瓶颈问题的方法,即使在没有先验经验存在的情况下也能在表达谱整体层次上对数条基因进行分析,从而从数理统计上把表达谱芯片数据与生物学意义很好地衔接起来,使得研究者们能够更轻松、更合理地解读芯片结果。

    06

    Nat. Commun. | 用于加速发现抗生素抗性基因的知识整合和决策支持

    今天介绍一篇美国加州大学戴维斯分校研究团队在nature communications发表的一篇论文“Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes”。本文提出了一个知识集成和决策支持的框架(KIDS),通过知识图谱的构建、数据不一致性的消除和迭代链接的预测来实现自动化的知识发现。本文综合10个公开数据源的知识,构建了一个大肠杆菌抗生素耐药性知识图谱,包含来自23种三元组类型的651,758个关联关系。作者对图进行迭代链接预测,并对生成的假设进行湿式验证,发现了15个抗生素耐药的大肠杆菌基因,其中6个基因从未被报道与微生物的抗生素耐药性有关。阳性结果的概率与实验验证的结果高度相关。此外,在肠道沙门氏菌(Salmonella enterica)中发现了5个同源物,它们都被验证对抗生素有抗性。这项工作展示了证据驱动的决策能以更高的置信度和更快的速度实现自动化的知识发现,从而取代传统的耗时且昂贵的方法。

    02

    Cell | 使用数据扩散从单细胞数据中恢复基因的相互作用

    今天给大家介绍纪念斯隆凯特琳癌症中心的斯隆凯特琳研究所的Dana Pe’er教授等人发表在Cell上的一篇文章 “Recovering Gene Interactions from Single-Cell Data Using Data Diffusion” 。单细胞RNA测序技术受到许多技术噪音的困扰,包括mRNA分子采样不足等,造成的噪声被称为“dropout”,其可能严重模糊重要的基因-基因关系。为了解决这个问题,本文开发了MAGIC (基于马尔可夫亲和力的细胞图插补法) ,这是一种通过数据扩散在相似的细胞之间共享信息以消除细胞计数矩阵的噪声并填补“dropout”的方法。本文在几个生物系统上验证MAGIC,发现它在恢复基因-基因关系和附加结构方面是有效的。

    02
    领券