首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【机器学习】“机器深度学习”的未来:读懂人类的情感

“机器学习”的概念自上世纪50年代出来以来就备受科技界的关注,而近年来“深度学习”逐渐成为机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来识别图像、声音和文本等数据。 美国科技媒体《连线》杂志网络版日前发文对“机器深度学习”技术的最新进展进行了总结。以下是文章的主要内容。 在QuocLe的眼中,世界都是由一系列的数字组成的。“一张数码照片实际上都是数字,”他说道,“如果将人们所说的话拆分成单独的音素,那么它们同样可以被编译成数字。”如果按照QuocLe的说法,就

06
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习模型陷阱:哈佛大学与OpenAI首次发现“双下降现象”

    近日,哈佛大学Preetum Nakkiran等研究者与人工智能研究组织OpenAI的研究者Ilya Sutskever最新研究发现,包括卷积神经网络(Convolutional Neural Networks,CNNs)、残差网络(Residual Networks,ResNets)与Transformers的许多现代深度学习模型均会出现“双下降现象”(Double Descent Phenomenon):随着模型大小、数据大小或训练时间的增加,性能先提高,接着变差,然后再提高。其峰值出现在一个“临界区”,即当模型几乎无法拟合训练集时。当增加神经网络中的参数数目时,测试误差最初会减小、增大,而当模型能够拟合训练集时测试误差会经历第二次下降。这种效果通常可以通过仔细的正则化来避免。虽然这种行为似乎相当普遍,但我们尚未完全了解其发生的原因,因此这是一个值得进一步研究的重要研究方向。

    05

    深度|MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?

    我们生活在物理世界里,但往往没有深入思考这样一个问题:自己是如何迅速理解周边事物的? 人类能够对背景的变化、事物之间的相互关联等等做出非常自然的反应。而且,这些反应并不会耗费我们多少注意力,同时还能处理得非常妥帖。 但是,人类的这种与生俱来的能力对于机器来说就没那么简单了。对于一个事物,其潜在发展的变化方式有成千上万种可能,这让计算机学会如何正确地做出预测是非常困难的。 近期,麻省理工学院(MIT)计算科学与人工智能实验室(CSAIL)的研究工作者的一项研究成果再次推进了机器学习的发展。深度学习算法仅仅通过

    012
    领券