“机器学习”的概念自上世纪50年代出来以来就备受科技界的关注,而近年来“深度学习”逐渐成为机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来识别图像、声音和文本等数据。 美国科技媒体《连线》杂志网络版日前发文对“机器深度学习”技术的最新进展进行了总结。以下是文章的主要内容。 在QuocLe的眼中,世界都是由一系列的数字组成的。“一张数码照片实际上都是数字,”他说道,“如果将人们所说的话拆分成单独的音素,那么它们同样可以被编译成数字。”如果按照QuocLe的说法,就
AI 科技评论按:过去十年里,研究人员在计算视觉领域取得了巨大的成功,而这其中,深度学习模型在机器感知任务中的应用功不可没。此外,2012 年以来,由于深度学习模型的复杂程度不断提高,计算能力大涨和可用标记数据的增多,此类系统的再现能力也有了较大进步。 不过在这三个辅助条件中,可用数据集的发展速度并没有跟上模型复杂度(已经从7 层的 AlexNet 进化到了 101 层的 ResNet)和计算能力的提高速度。2011 年时,用于训练 101 层 ResNet 模型的依然是只有 100 万张图片的 Image
大多数人懒得给照片加标签。如果你属于这一类(大概率事件),那么你一定知道搜索某张照片有多辛苦。 但这很有可能即将成为过去。 本周,Facebook 披露了其机器学习平台 Lumos 的更多信息: Lumos 将使用户们利用相片内容进行搜索,而不是图片名称或是标签。 Facebook 应用机器学习负责人 Joaquin Quiñonero Candela 解释说: “换句话说,搜索‘黑衬衫照片‘时,系统能识别出每张照片里是否有黑衬衫,并据此搜索;即便照片并没有被添加标签也没有关系。 Lumos 利用了计
前 言 深度学习从根本上改变了我们周围的一切。很多人认为必须成为深度学习的专家,才能将深度学习用到自己的应用中。然而,实际并非如此。 在我之前的文章中,我讨论了6款新手也能快速构建的深度学习应用(https://www.analyticsvidhya.com/blog/2017/02/6-deep-learning-applications-beginner-python/)。我非常高兴地看到有上百名读者受到它的激励。所以在这篇文章之后,我想再写一些深度学习应用方面的东西。如果你错过了我之前的文章,我建议你
李杉 编译自 NewScientist 量子位 报道 | 公众号 QbitAI 春天来了,万物复苏。在坦桑尼亚西北部的塞伦盖蒂大草原上,计算机们正在履行它们的职责:用机器学习算法识别不同物种,追踪野生动物。 以后的《动物世界》大概就是这样的了。 怀俄明大学的Jeff Clune、Mohammed Sadegh Norouzzadeh和哈佛大学、牛津大学、明尼苏达大学的研究人员一起,训练深度学习系统区分了48种动物,包括大象、长颈鹿和瞪羚。 在测试过程中,这种算法识别物种的准确率高达92%。他们使用
深度学习中的双下降现象,可能大家也遇到过,但是没有深究,OpenAI这里给出了他们的解答。
李杉 编译整理 量子位 出品 | 公众号 QbitAI 从图像和语音识别到自然语言分析,神经网络已经在很多领域大展身手。过去几年,它们的精确度已经几乎可以与人类媲美。但仍有很多神经网络无法完成的任务—
[注: 本文翻译自网上的一篇文章,有删节,原文:https://medium.com/iotforall/the-difference-between-artificial-intelligence-machine-learning-and-deep-learning-3aa67bff5991]
AI科技评论按:Facebook的AML和FAIR团队合作进行自然语言处理对自然语言理解进行着合作研究。在2017年4月19日举办的F8开发者大会上,Facebook向公众介绍了他们的研究进展、自然语言理解在Facebook产品中的应用,并且介绍了平民化的自然语言理解平台CLUE,希望依靠大家的力量,继续丰富自然语言理解的应用。 演讲者:Facebook工程主管Benoit Dumoulin,技术项目主管Aparna Lakshmiratan。AI科技评论听译。 (首先上台的是Benoit)大家好,我是Be
近日,哈佛大学Preetum Nakkiran等研究者与人工智能研究组织OpenAI的研究者Ilya Sutskever最新研究发现,包括卷积神经网络(Convolutional Neural Networks,CNNs)、残差网络(Residual Networks,ResNets)与Transformers的许多现代深度学习模型均会出现“双下降现象”(Double Descent Phenomenon):随着模型大小、数据大小或训练时间的增加,性能先提高,接着变差,然后再提高。其峰值出现在一个“临界区”,即当模型几乎无法拟合训练集时。当增加神经网络中的参数数目时,测试误差最初会减小、增大,而当模型能够拟合训练集时测试误差会经历第二次下降。这种效果通常可以通过仔细的正则化来避免。虽然这种行为似乎相当普遍,但我们尚未完全了解其发生的原因,因此这是一个值得进一步研究的重要研究方向。
近年来,由于人工智能技术的一些飞跃,计算机已经学会了更清晰地观察世界。但业内人士都清楚,这些人工智能算法的缺陷。最近一项实验表明,最好的人工智能视觉系统可能会在看到一张照片吐出种族污蔑、性别刻板印象,或者一个诋毁对方性格的词汇。
这次的实践是基于很小的数据集,搭建的系统也比较粗糙,只是个toy implementation。主要用来练手和熟悉流程的。
【导读】近日,CV-Tricks.com发布了一篇文章,使用SSD进行目标检测,SSD是当前最流行的目标检测算法之一。作者从检测的基本概念、滑动窗口检测、减少滑动窗口方法的冗余计算、修改后网络的训练方
作者丨Thomas Viehmann 编译丨钱磊 编辑丨陈彩娴 今天我想要与大家分享的是深度神经网络的工作方式,以及深度神经与“传统”机器学习模型的不同之处。我的计划具体如下: 首先简单地思考一下如何将问题设置成分类的形式; 接下来回顾偏差-方差分解,并在偏差-方差权衡的背景下,在VC-维数和非参数上进行探讨; 研究一些关于插值神经网络和双下降的文献; 在文末做一个非常简单的实验,用图形直观地讲解为什么双下降现象会发生。 1 正式设置一个机器学习问题 为了有些趣味,让我们先设置一个问题。 首先从数据开始。假
Deepgram 是 YC 投资的一家初创公司,其业务是使用机器学习分析企业的音频数据。近日该公司开源了内部的深度学习工具 Kur(https://github.com/deepgram/kur)。该工具能够进一步帮助那些对音频分析感兴趣的人实现他们的想法。开源内容还包括10个小时的已转录音频,以10秒的片段拼接,目的是加快训练过程。 Kur 与 Keras 相似,但 Kur 进一步节略了建立和训练深度学习模型的过程。通过使深度学习更容易实现,Kur 进一步使图像识别和语音分析更容易进行。 Deepgram
文章来自网易科技(原标题:AI 到底怎么在自动驾驶领域派上用场?看这篇你就懂了) 编者按:以深度学习架构为基础的人工智能技术(如深度神经网络,DNN)早已在全球铺开,其应用范围覆盖了汽车市场、计算机视觉、自然语言处理、传感器融合、物体识别和自动驾驶等领域。眼下,自动驾驶新创公司、互联网公司和 OEM 商都在探索图形处理单元(GPU)在神经网络中的应用,推动车辆早日进入自动驾驶时代。 如今,业界最先进的高级驾驶辅助系统(ADAS)一般都建立在集成或开放平台之上。想要获得更智能更复杂的ADAS系统并迈向完全
我们生活在物理世界里,但往往没有深入思考这样一个问题:自己是如何迅速理解周边事物的? 人类能够对背景的变化、事物之间的相互关联等等做出非常自然的反应。而且,这些反应并不会耗费我们多少注意力,同时还能处理得非常妥帖。 但是,人类的这种与生俱来的能力对于机器来说就没那么简单了。对于一个事物,其潜在发展的变化方式有成千上万种可能,这让计算机学会如何正确地做出预测是非常困难的。 近期,麻省理工学院(MIT)计算科学与人工智能实验室(CSAIL)的研究工作者的一项研究成果再次推进了机器学习的发展。深度学习算法仅仅通过
在过去的几年里,人工智能(AI)一直是媒体大肆炒作的热点话题。机器学习、深度学习和人工智能都出现在不计其数的文章新闻中。但是很多时候,大家对于这些概念并没有一个很清晰的认识,容易把这些概念弄混。
来源:AI科技评论本文约5700字,建议阅读10+分钟本文分享的是深度神经网络的工作方式,以及深度神经与“传统”机器学习模型的不同之处。 今天我想要与大家分享的是深度神经网络的工作方式,以及深度神经与“传统”机器学习模型的不同之处。我的计划具体如下: 首先简单地思考一下如何将问题设置成分类的形式; 接下来回顾偏差-方差分解,并在偏差-方差权衡的背景下,在VC-维数和非参数上进行探讨; 研究一些关于插值神经网络和双下降的文献; 在文末做一个非常简单的实验,用图形直观地讲解为什么双下降现象会发生。 1、正式设
TensorFlow是谷歌研发的开源框架。本讲座介绍了如何使用TensorFlow创建深度学习应用程序,以及与其他Python机器学习库进行比较。 我叫Ian Lewis,我是谷歌云平台团队的开发者大
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 目前支持蓝色标准车牌,黄色标准车牌,小型新能源车牌的车牌生成。 实际的车牌示例 实际的大型新能源车牌示例 实际的小型新能源车牌示例 生成的蓝色底牌车牌示例 生成的小型新能源车牌示例 全部代码 获取方式: 关注微信公众号 datayx 然后回复 车牌生成 即可获取。 程序结构说明 license_plate_elements.py: 车牌号元素,其中定义: 车牌号中,不同车牌位的取值范围; 不
选自thecuriousaicompany 机器之心编译 参与:陈韵竹、刘晓坤 本文回顾了一些常见的半监督算法,随后介绍了作者在 NIPS 2017 展示的 Mean Teacher 项目。 Mean Teacher 的论文地址:https://arxiv.org/abs/1703.01780 Mean Teacher 的 GitHub 地址:https://github.com/CuriousAI/mean-teacher/ 半监督学习即将迎来黄金时代。 深度学习模型已在多年来展示了超越人类能力的表现
AI 科技大本营按:本文编译自 Adrian Rosebrock 发表在 PyImageSearch 上的一篇博文。该博文缘起于一位网友向原作者请教的两个关于目标检测的问题:
编译 | 庞佳 责编 | Leo 出品 | 人工智能头条(公众号ID:AI_Thinker) 【AI 科技大本营按】本文编译自 Adrian Rosebrock 发表在 PyImageSearch 上的一篇博文。该博文缘起于一位网友向原作者请教的两个关于目标检测的问题: 如何过滤或忽略我不感兴趣的类? 如何在目标检测模型中添加新的类?这是否可行? Adrian Rosebrock 认为这两个问题是学习目标检测的同学经常问到的问题,于是创作了本篇文章统一回答。 以下为博文摘录,AI 科技大本营编译: 具体来
人工智能 (AI) 曾经只是一种存在于科幻领域的科技,而现在,研究实验室已经不断研发出了各种应用 AI 的日常产品。AI 技术的进步很大程度上得益于计算机视觉的发展。计算机视觉技术关注的是构建能够收集和处理视觉信息的软件。应用计算机视觉可以识别照片中的人物、读取 X 光片、进行工厂机器人系统的智能升级,但它的影响范围远不止于此。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx DBnet文本检测网络加入多分类,可以实现模型很小又能够区分类别的功能,然后可以根据检测框的标签快速提取目标字段,在端侧部署的话就能达到非常高的精度和效率。 1.标注数据 标注方法和标注目标检测的数据一样,一个框加一个标签 pip install labelImg ==1.8.6 安装完毕后,键入命令: labelImg 或者下载工具 labelImg.exe链接:https://pan.baidu.com/s/14
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 核酸检测报告已经是疫情这些年很多人出行必备的材料,而且很多机关单位、政府部门都需要检查核酸报告才能让相关的人员进出场所。如果有一个模型能够快速的识别并提取核酸报告里的关键信息,则能很大程度上提升那些需要提交核酸报告的OA流程审核效率,提升企事业的服务效率。 1.标注数据 标注方法和标注目标检测的数据一样,一个框加一个标签 pip install labelImg ==1.8.6 安装完毕后,键入命令: labelImg
8-Helpful-Everyday-Examples-of-Artificial-Intelligence-1068x656-1.jpg
前面我们学习了ggplot2中组合图形的绘制,在科研论文中,组合图形每张子图通常需要加上ABCD等标签,如下图所示。
在互联网时代,内容创作已经成为了一项重要的工作。从传统的文学创作到现代的博客、社交媒体、新闻报道等,内容创作已经在互联网上得到了广泛的传播。然而,内容的需求迅速增加,而创作者的时间和精力却有限。这就是AI辅助创作应运而生的背景。
因为我这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件 custom_data.yaml
在今天博客的最后,你将会了解如何在你自己的数据库中建立、训练并评估一个卷积神经网络。
在软件开发过程中,开发者们为了跟踪BUG及进行软件相关讨论,进而方便管理,创建了Issue。管理Issue的系统称为BTS(Bug Tracking System,Bug跟踪系统)。当今具有代表性的BTS有Redmine、Trac、BugZilla等。
导语:在这篇 Keras 教程中, 你将学到如何用 Python 建立一个卷积神经网络!事实上, 我们将利用著名的 MNIST 数据集, 训练一个准确度超过 99% 的手写数字分类器. 开始之前, 请
2018年9月6日,腾讯优图将联合国际顶级期刊《科学》(Science)杂志共同举办计算机视觉峰会,邀约来自全球计算机视觉领域的顶级专家学者,探讨计算机视觉的前沿技术突破与行业应用趋势。
在R语言官方文件中一般不推荐绘制饼图,这是因为同其它统计图相比,饼图可视化程度有限,表现力也有所欠缺。在之前的学习中我们可以感受到条形图和点图基本上就能替代饼图。不过,在这里我们也可以抱着学习的态度来看R语言中是如何绘制饼图的,毕竟技多不压身。
前言 在过去的十年里,Yahoo一直持续投资建设和扩展Apache Hadoop集群,到目前为止共有超过4万台服务器和600PB数据分布在19个集群上。正如在2015 Hadoop 峰会上介绍的,我们在自己的服务器上开发了可扩展的机器学习算法,用于分类、排序和计算词向量。目前,Hadoop集群已成为Yahoo大规模机器学习的首选平台。 深度学习(Deep Learning, DL)是雅虎很多产品的核心技术需求。在2015 RE.WORK深度学习峰会上,Yahoo Flickr团队(Simon Osinder
本文将通过拆解SmallVGGNet的架构及代码实例来讲解如何运用Keras进行多标签分类。
你可能不会做披萨饼,但现在你的深度学习模型已经学会了。麻省理工学院最新发布的深度学习模型PizzaGAN通过基于组合层的GAN模型来学习如何训练GAN模型以识别制作披萨饼。 该模型分为两部分:
随着人工智能的高速发展,开发者们对于能够应对产品多样化挑战的学习框架TensorFlow,也有着很高的热情。除了各类科技产品,零售行业也同样将TensorFlow运用于大规模的深度学习中。
随着人工智能技术的研究迈过了初期的野蛮生长,走进深水区。如何充分利用人工标注信息、减小标注工作量、将人类经验与学习规则充分结合成为了急需解决的关键问题!本文结合斯坦福 AI 实验室在弱监督学习领域的研究进展、成果以及相关思考,就弱监督学习的理论方法、标注工具、研究进展三个方面展开讨论。
近年来,机器学习对现实世界的影响与日俱增。在很大程度上,这是由于各种各样的深度学习模型的出现,使得从业人员可以在不需要任何手动操作特征工程的情况下,就可以在对比基准数据集上获得目前最佳分数。现在我们可以使用像 TensorFlow 和 PyTorch 这样的各类开源机器学习框架,以及大量可用的最先进的模型,可以说,高质量的机器学习模型现在几乎成为了一种可商品化的资源。然而,这里还存在一个容易被忽视的问题:这些模型依赖于大量手动标注的训练数据。
“ 随着人工智能的高速发展,开发者们对于能够应对产品多样化挑战的学习框架TensorFlow,也有着很高的热情。除了各类科技产品,零售行业也同样将TensorFlow运用于大规模的深度学习中。 在这篇文章中,来自可口可乐公司数据侠Patrick Brandt,就将为我们介绍如何使用AI和TensorFlow实现无缝式购买凭证。 可口可乐的核心忠诚度计划于2006年以MyCokeRewards.com形式启动。 “MCR.com”平台包含为每一瓶以20盎司规格销售的可口可乐、雪碧、芬达和动乐产品,以及可以在杂
人工智能技术(以下称 AI)是人类优秀的发现和创造之一,它代表着至少几十年的未来。在传统的编程中,工程师将自己的想法和业务变成代码,计算机会根据代码设定的逻辑运行。与之不同的是,AI 使计算机有了「属于自己的思想」,它就像生物一样,能够「看」、「听」、「说」、「动」、「理解」、「分辨」和「思考」。
作者 | 卢智雄 作为一个设计师,我对现在的AI浪潮的态度起初是:听起来很棒,但跟我这个设计师有什么关系呢? 我对所有的趋势保持谨慎态度,何况现在媒体鼓吹的人工智能,跟我们在科幻小说中读到的强人工智能相比还有很大差距。更重要的是,一直以来设计师关注的都是界面,职责是根据不同的交互方式设计不同的好用的界面,而AI似乎是一个底层的创新,和界面没有太多关系。 当然随着我对这个问题一步一步的了解,我发现自己之前的见解非常狭隘。 我对AI算法的了解 我对AI算法的接触并不多,只是在TU/e读硕士的一门课(Embo
使用ImageNet、CIFAR、MNIST 或 IMDB 这些数据集时,你是不是会潜意识中假设,这些数据集中的类标签都是正确的?
在看到某个物体一到两次之后,我们大多数人都能认出来。但支持计算机视觉和语音识别功能的算法却需要接触数千个例子,才能对新的图像或词语变得熟悉。 现在,谷歌DeepMind的研究人员提出了一个解决方法。他们对一个深度学习算法进行了巧妙的改动,使之在接触单个例子之后即能够识别图片中的物体或其他事物——他们将之称为“单样本学习”。该团队在一个大型标签图像数据库中展示了这一功能,还在手写和语言识别中进行了演示。 谷歌DeepMind的研究人员Oriol Vinyals在一个深度学习系统上添加了记忆体组件。该团队在名为
领取专属 10元无门槛券
手把手带您无忧上云