深度学习的起源 深度学习(Deep Learning)是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。深度学习属于无监督学习。...深度学习的概念源于人工神经网络的研究。...深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。含多隐层的多层感知器就是一种深度学习结构。...深度学习正是希望通过模拟人脑多层次的分析方式来提高学习的准确性。...深度学习的动机 学习基于深度架构的学习算法的主要动机是: ①不充分的深度是有害的; 在许多情形中深度2就足够(比如logicalgates, formal[threshold] neurons
在智能产品设计与开发领域,深度学习模型的应用越来越广泛。本文将介绍如何使用Python构建一个简单的深度学习模型,并将其应用于智能产品的设计与开发。...深度学习基础深度学习是一种基于人工神经网络的机器学习方法,能够自动学习和提取数据中的特征。与传统机器学习方法相比,深度学习更适合处理复杂的非结构化数据,如图像、语音和文本。2....应用于智能产品在智能产品设计与开发中,深度学习模型可以用于各种应用场景。例如:图像识别:智能相机、安防系统。语音识别:智能助手、语音控制设备。自然语言处理:智能客服、文本分类。...通过集成深度学习模型,智能产品能够更加准确、高效地完成各种任务。结束语本文介绍了如何使用Python构建一个简单的深度学习模型,并将其应用于智能产品设计与开发。...如果你对深度学习和智能产品开发有更多兴趣,不妨进一步探索和实践。希望本文对你有所帮助!
之前已为大家呈现深度学习工程师的职业发展情况 但如果探索深度学习行业的时候,发觉做工程师不适合自己,想转行, 那今天就一起来看看,深度学习工程师转行,能做些什么?...如果转行,请选择AI产品经理岗 根据深度学习行业中的各级岗位来看,工程师可以有如下方向的转型路径: 转型产品经理、转型学术研究人员、转型运营经理 而综合考虑,产品经理其实是最适合的转型岗位。...原因有二: 第一,AI产品的产品经理有很高的技术壁垒,需要了解技术边界,才能提出产品的设计方案,而深度学习工程师具有技术优势。...但是大场景往往考验的是推动能力——也就是沟通技巧、协调资源、管理团队的能力,这些恰恰不是深度学习工程师的强项, 容易打击转型时期的自信心及外界的认可度。...看完这些,如何从深度学习工程师转型AI产品经理,相信你一定有了明确的方向。
再加上近期跟我们购买Jetson产品的入门用户一直嚷嚷希望能跑个深度学习相关的Sample code来练手,我们不得不“被迫营业”,制作了一段教程视频。 ? 视频课程得重点: 1.
MyEncyclopedia 公众号主浙大本硕毕业后在BAT做资深工程开发,精通Java,算法和大数据开发,本可以靠着工程能力成为P9,但出于对AI的强烈兴趣,在业余时间,自学多年,从理论到实践,并最终转行到知名公司任资深机器学习岗...MyEncyclopedia 公众号提炼自己在AI多个领域的学习心得体会:深度学习,强化学习,统计机器学习,算法与工程实现。同时,用上述多个视角来全面看待问题,坚持从第一性原理出发理解推导。...目前,MyEncyclopedia 系列文章包括 深度学习论文解析 深度强化学习实践和理论 基础统计和统计机器学习 多维度思考算法题 动手学 Sutton 强化学习教程 将来,会逐渐完善已有系列并涉及...GNN,NLP,CV,KG,RL 方向的前沿论文和动手实践,并致力于寻求联系 深入数学理论,进一步用动画来可视化,建立直觉的联系 创意编程,用深度学习,强化学习实践cool idea 如果你也想更广更深的学习深度学习和算法的话
从 iOS 10 开始,苹果已经在 Siri 的语音中用到了深度学习,iOS 11 中的 Siri 依然延续这一技术。使用深度学习使得 Siri 的语音变的更自然、流畅,更人性化。...近期,深度学习对语音领域冲击巨大,极大的超越了传统的技术,例如隐马尔可夫模型。参数合成技术也从深度学习技术中有所收益。...然而,这种技术计算成本极高,对产品而言还不成熟。为了让所有平台的 Siri 语音提供最佳质量,苹果迈出了这一步,在设备中的混合单元选择系统上使用了深度学习。...然而,基于深度学习的方法通常在参数化的语音合成中更加出色,因此我们也希望深度学习的优势能转换到混合单元选择合成(hybrid unit selection synthesis)中。...在选定之后,我们录制了 20 多小时的语音并使用新的深度学习 TTS 技术构建了一个新的 TTS 声音。最后,新的美式英语 Siri 听起来要比以前好。
近日,智能编程机器人aiXcoder发布了首个“基于大规模深度学习模型”的智能编程产品aiXcoder Large版(简称aiXcoder L),这是国内首个基于“大模型”的智能编程商用产品,也标志着aiXcoder...已在智能编程领域将“深度学习大模型”推向企业商用时代。...更大的模型,更强的能力 aiXcoder一直致力于使用深度学习技术研发智能编程机器人产品,此次推出的aiXcoder L版搭载了Billion级大规模参数的深度学习模型,在代码补全率、代码补全长度等关键性能上有了大幅提升...aiXcoder L版也成为国内首个将大规模参数深度学习技术用于代码辅助编程的商用产品。 先直观感受一下aiXcoder L版的代码补全效果。...伴随着企业计算资源的不断升级,基于大规模深度学习模型的企业应用逐渐成为可能。aiXcoder L版的推出即是贴合企业需求而发布的一款基于Billion级参数深度学习模型的智能编程产品。
1.欢迎(Welcome) [欢迎 Welcome 1] 深度学习改变了传统互联网业务,例如网络搜索和广告。但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注。...显然,AI的各个分支中,发展的最为迅速的就是深度学习。因此现在,深度学习是在科技世界中广受欢迎的一种技术。...推荐文章 深度学习教程 | 深度学习概论 深度学习教程 | 神经网络基础 深度学习教程 | 浅层神经网络 深度学习教程 | 深层神经网络 深度学习教程 | 深度学习的实用层面 深度学习教程 | 神经网络优化算法...深度学习教程 | 网络优化:超参数调优、正则化、批归一化和程序框架 深度学习教程 | AI应用实践策略(上) 深度学习教程 | AI应用实践策略(下) 深度学习教程 | 卷积神经网络解读 深度学习教程...| 经典CNN网络实例详解 深度学习教程 | CNN应用:目标检测 深度学习教程 | CNN应用:人脸识别和神经风格转换 深度学习教程 | 序列模型与RNN网络 深度学习教程 | 自然语言处理与词嵌入
深度学习实战 前面总结了吴恩达的深度学习课程笔记,博主把后续的深度学习课程笔记总结记录到个人博客里面,以供学习和交流使用。今天总结的是深度学习的超参数调试、正则化和梯度检验。...改善神经网络 依次通过数据集、偏差方差、正则化、梯度爆炸和消失来掌握深度学习的基础理论。...高偏差(训练数据集)->选择一个新的网络模型(含有更多的深度学习层数和隐藏节点数的模型)->重复迭代训练直到偏差降下来为止即模型拟合数据(偏差降到可接受的范围)->检查方差是不是过高(验证数据集)->如果方差过高...,深度学习网络是如何来实现L2正则化的呢?...深度学习算法采用BP进行逐步迭代求解参数w和b,那么我们加入正则化后如何进行处理呢?
译者注:如果你对如何在公司产品中引入和运用深度学习模型有浓厚的兴趣,下文也许会给你带来一些帮助。 三年来,我们一直在EyeEm公司开发计算机视觉产品-这些产品处理数十亿的图片。...下文对EyeEm计算机视觉产品的发展历史做一个梳理,其中既有不得不面临的挑战、开发中获得的经验也有对未来的展望。...这两个各自独立团队的作用和责任始终如一: 研发团队开发自包含的机器学习模型,模型接收简单的输入,一般是张图片,返回一个简单输出,例如打分的分值或者是一列标记。...运行研发部门开发的深度学习算法,需要亚马逊的GPU平台,这由一个简单的自动扩展功能组来管理。至于公司其他的基础设施,使用Chef进行管理。...允许每一个深度学习模型都可以定义独立需求,并且可以运行在独立的虚拟环境中,这样可以确保研发团队可以为不同的模型使用不同的框架。Keras和Tensorflow即将到来。
注:本文内容摘自书籍> 深度学习的优势 深度学习从数据中进行学习时有两个基本特征: 第一,通过渐进的、逐层的方式形成越来越复杂的表示; 第二,对中间这些渐进的表示共同进行学习...总之,这两个特征使得深度学习比先前的机器学习方法更加成功。 梯度提升机,用于浅层学习问题;深度学习,用于感知问题。...为什么是深度学习,为什么是现在 深度学习用于计算机视觉的两个关键思想,即卷积神经网络和反向传播,在 1989 年就已经为人们所知。...此外,深度学习行业已经开始超越 GPU,开始投资于日益专业化的高效芯片来进行深度学习。...参考 书籍>
什么是深度学习(Deep Learning) 人工智能、机器学习与深度学习 人工智能诞生于 20 世纪 50 年代,当时计算机科学这一新兴领域的少数先驱开始提出疑问:计算机是否能够“思考” 我们今天仍在探索这一问题的答案...因此,人工智能是一个综合性的领域,不仅包括机器学习与深度学习,还包括更多不涉及学习的方法。...深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。...“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。 数据模型中包含多少层,这被称为模型的深度(depth)。...参考 > 神经网络 深度学习入门:一句话告诉你什么是神经网络(CNN,RNN,DNN)
目前深度学习算法、强化学习算法、迁移学习算法也在推荐系统中得到大规模采用。...矩阵分解算法就是预测用户对标的物的评分,logistic回归算法就是概率预测方法,而youtube发表的深度学习推荐就是基于分类思路的算法(参见参考文献10)。...随着最近几年深度学习在图像识别、语音识别领域的大获成功。...有很多研究者及工业实践者将深度学习用于推荐系统,也取得了非常好的成绩,如youtube、Netflix、阿里、京东、网易、携程等,都将深度学习部署到了实际推荐业务中,并取得了非常好的转化效果(参考后面的参考文献中对应的论文...该模型将传统模型和深度学习模型相结合。
2015 年结束了,是时候看看 2016 年的技术趋势,尤其是关于深度学习方面。新智元在 2015 年底发过一篇文章《深度学习会让机器学习工程师失业吗?》,引起很大的反响。...深度学习,或者更宽泛地说——使用联结主义架构的机器学习算法,可能会让机器学习算法变成过去时,因为深度学习算法还远远不是饱和状态。...新智元整理了业内人士关于 2016 年的深度学习技术展望,以及 2015 年深度学习最流行的 10 大框架。...MXNet 能支持 Python、R、Julia、Go、Javascript 等编程语言,是出于效率和灵活性设计的深度学习框架。它能够给深度学习程序增加一些小佐料,而且能最大化产品效率。...MXNetJS 允许你在各种计算图像中,运行最新水平的深度学习预测,并给客户端带来深度学习的乐趣。
量子位 | 李林 整理编译 提到深度学习,你可能会想到认猫、认脸,或者下围棋、翻译……其实,这项技术还能用在很多你意想不到的地方。 那么,“深度学习的最新进展能带来哪些产品上的突破?”...深度学习最近的进展吸收了统计学习[1, 2]、增强学习和数值优化的思想。关于这个领域的概况,见参考文献[9, 10]。...我下面列出一些借助目前的深度学习技术才可能实现的产品类别,排名不分先后: 定制化数据压缩、压缩感知、数据驱动的传感器校准、离线AI、人机交互、游戏、艺术助手、非结构化数据挖掘、语音合成。...深度学习适用于这个任务,因为我们不需要人工标注特征就能用神经网络来学习稀疏结构。...AlphaGo所用的深度学习技术可能很快将用于游戏的NPC上,利用玩家的弱点来提供更吸引人的游戏体验,其他玩家的游戏数据可以被发往云端供AI学习。 深度学习在游戏中的另一个应用是物理世界的模拟。
深度学习(Deep Learning)属于非常前沿的学科,没有现成的的综合型教材,主要是通过阅读大量论文和代码练习来学习。...代码方面推荐使用python为基础的theano框架,因为它比较偏底层,可以从细节掌握如何构建一个深度学习模块,而且方便结合python在数据领域的其它积累,例如numpy。...5、自然语言处理中的深度学习: http://cs224d.stanford.edu/ 本教程则偏重于深度学习在自然语言处理领域的运用,词向量等方面知识由此深入。...9、机器学习教程 https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/ 牛津大学的机器学习课程,讲到了大量深度学习和强化学习的内容...11、去kaggle实战玩玩吧 http://www.kaggle.com/ 来源:深度学习实验室
Tensorflow 由 Python API 编写,通过 C/C++引擎 加速; 使用 数据流图 生成 深度学习 中 最常见的 基本单元 。...指定的默认graph 中进行操作) Session (会去遍历那些具有依赖关系的op) Operation (节点) ---- [1] TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比
一、人工智能、机器学习、深度学习的关系 通过一张图像来解释人工智能、机器学习。深度学习三者关系。...,但在手动特征提取过程中工程庞大,逻辑复杂非常耗时,依恋经验; (3)深度学习是一种高效的机器学习算法,将特征提取与算法融合到一起让机器学习进行分辨。...三者关系如下图所示: 如上图所示 ,深度学习和机器学习的区别在于特征提取和算法的过程,机器学习依靠人工提取,提取过程与算法是分开的;而深度学习特征提取与算法是在一起的,深度学习是机器学习领域的一个新的方向...那么我们来定义一下深度学习: 深度:多层的人工神经网络结构,可以只有一层,也可以有很多层 学习:通过大量的数据进行学习,正向传播到最终到达输出层,通过误差的反向传播进行模型网络的不断修正。...二、 深度学习入门 2.1 生物神经网络 生物神经网络(Biological Neural Networks)一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
深度学习三剑客的坚持: LeCun:“这种算法很有价值,不知为什么要放弃它。” Hinton: “智能产生于人脑,所以从长远来说,人工智能应该像大脑系统一样工作。”...2006年是深度学习的起始年,Hinton在SCIENCE上发文,提出一种叫做自动编码机(Auto-encoder)的方法,部分解决了神经网络参数初始化的问题。...第一层卷积要学习的参数个数有5*5*3*6=75*6=450个,即6个卷积核。...深度学习已变成数据和运算能力的比拼,训练样本个数、GPU。...Transfer Learning迁移学习 把一个Domain的经验迁移到另一个Domain上去。
对于狼而言,在不同的环境下或者不同的姿势拍的图片具有明显区别,但是如果狼和狗都在同一个环境下得到的图片,有可能十分的相似,采用浅层分类有可能具有很大的误差,因此,如何选取特征是一个重点),这个时候需要采用深度学习...深度学习、人工智能和机器学习的概念 http://www.cnbruce.com/blog/showlog.asp?cat_id=37&log_id=1422
领取专属 10元无门槛券
手把手带您无忧上云