前言 在过去的几年里,人工智能(AI)一直是媒体大肆炒作的热点话题。机器学习、深度学习和人工智能都出现在不计其数的文章新闻中。...人工智能的简洁定义如下:努力将通常由人类完成的智力任务自动化。因此,人工智能是一个综合性的领域,不仅包括机器学习与深度学习,还包括更多不涉及学习的方法。...神经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。...你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原理进行建模的,但事实并非如此。...对于这一领域的新人来说,如果认为深度学习与神经生物学存在任何关系,那将使人困惑,只会起到反作用。你无须那种“就像我们的头脑一样”的神秘包装,最好也忘掉读过的深度学习与生物学之间的假想联系。
最近一段时间人们讨论最多的莫过于人工智能、机器学习和深度学习了。 很多公司已经果断采取措施,开发人工智能、机器学习和深度学习方面的应用。...人工智能、机器学习和深度学习正在改变整个科技世界,但是这些技术的发展全都得益于数据学的发展和过去在数据储存、计算和分析上的巨大投入。...人工智能所包含的范围最广,其次是机器学习,机器学习是人工智能的子领域,最后是深度学习,就是驱动现在人工智能蓬勃发展的技术。 ?...人工智能:三者中含义最广泛的术语,包括使用逻辑、如果-那么规则、决策树的能够模拟人类智力的所有技术(包含机器学习和深度学习) 机器学习:人工智能的子领域,包括了能够使机器改进任务体验的所有深奥统计技术,...包含了深度学习 深度学习:机器学习的子领域,由多种算法组成,能够让软件的多层级神经网络接受大量数据的“训练”,提高在语音、图像识别等任务上的表现 机器学习是人工智能技术的核心概念,通过模拟人类的决策过程来搭建神经网络
空山鸣响,静水流深:深度学习概述 ---- 深度学习的一些简介,其要点如下: 深度学习实际上是基于具有多个隐藏层的神经网络的学习; 深度学习的思想来源于人类处理视觉信息的方式; 深度学习的发展得益于数据的井喷和计算力的飙升...image 空竹里的秘密:自编码器 ---- 自编码器的原理与特点,其要点如下: 自编码器是一种无监督学习方式,目的在于学习数据的重新表达; 多个浅层自编码器级联可以得到深度的栈式自编码器,并使用无监督预训练结合有监督微调的方式加以训练...image 困知勉行者勇:深度强化学习 ---- 深度强化学习(deep reinforcement learning)是深度学习和强化学习的结合,它将深度学习的感知能力和强化学习的决策能力熔于一炉,用深度学习的运行机制达到强化学习的优化目标...,从而向通用人工智能迈进。...深度强化学习的简单原理与方法分类,其要点如下: 深度强化学习是深度学习和强化学习的结合,有望成为实现通用人工智能的关键技术; 基于价值的深度强化学习的基本思路是建立价值函数的表示,通过优化价值函数得到最优策略
由于近期在图片、语音识别的技术突破,以及AlphaGo背后的技术,都采用的是深度学习技术,使得许多人认为人工智能就是深度学习。...然而,在许多业内人士看来,尽管深度学习确实推动了一拨技术变革,但其所代表的人工智能技术仍然是“弱人工智能”技术。...虽然三位作者和深度学习顶尖大牛Geoffrey Hinton相互之间都礼貌地表明,“贝叶斯程序学习”和“深度学习”在不同的任务上各领风骚,假如能彼此借鉴,一定能互相弥补,但是学术界中的“贝叶斯派”和“神经网络派...“自主学习”的“人工智能”仍然相去甚远。...这种向量与基于深度学习产生的词向量类似,可以用于进行语义相似度计算,但是不同点是“概念化向量”是可解释的,而由深度学习产生的词向量是不可解释的。 ? ?
核心点:从5大方面,讲解机器学习、深度学习、人工智能的区别和联系! 没有接触过机器学习的同学,往往对机器学习、深度学习、甚至是人工智能有着模糊的概念。 在脑海中,往往裹了一层纱,好似懂,又说不明白。...咱们一起来看下~ 定义与目标 人工智能 定义: 人工智能是一门研究如何使计算机系统能够执行需要人类智能的任务的科学和工程领域。这包括理解自然语言、感知环境、学习、决策制定等方面的技术。...深度学习: 人工智能是一个更广泛的概念,指涉包括规则系统、专家系统在内的所有使计算机具有智能的技术。机器学习是一种实现人工智能的方法,而深度学习是机器学习的一种技术手段,通过神经网络实现学习和表示。...深度学习是机器学习的一种,通过深度神经网络实现对数据的层次化学习。 数据需求 人工智能 数据需求: 人工智能的实现可能不严格依赖于大量的数据,而更多地依赖于先验知识、规则系统和专家经验。...交通与物流: 路线优化、交通流预测。 深度学习 应用领域: 深度学习在多个领域取得了显著的成功,包括但不限于: 计算机视觉: 图像分类、目标检测、人脸识别。 语音识别: 语音转文本、语音合成。
人工智能、机器学习、深度学习这些名词经常会在各种场合听到,那具体有哪些区别呢?在业内来说,这几个概念还是有区别的,如果混用就会让人觉得是个门外汉。...业界有这个说法:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限。 深度学习:神经网络为代表很“深”的机器学习。这个解释是我个人给出的,仅供参考~深度学习,首先要很“深”。...深度学习的基础是神经网络,而神经网络往往层数越深,效果越好。...深度学习现在很火,甚至可以说人工智能火就是被深度学习带火的,其原因还是效果好。...深度学习大大提升了人脸识别、语音识别这些任务的准确率,使得很多之前不可能的应用成为可能,这是通用人工智能的必经之路,当然也是未来的方向。
但您最近可能还听说过其他术语,如“机器学习”和“深度学习”,有时它们与“人工智能”交替使用。结果,人工智能、机器学习和深度学习之间的区别可能非常不明确。...接下来,我将简单介绍人工智能(AI)、机器学习(ML)和深度学习(DL)的实际意义以及它们的不同之处。 那么AI、ML和DL有什么区别?...本质上机器学习只是实现人工智能的一种途径。 亚瑟.塞缪尔(Arthur Samuel)在1959年创造人工智能后不久就创造了这个短语,将其定义为“无需明确编程就能具备的学习能力”。...一旦准确度足够高,我们可以认为机器现在已经“学习”了猫的样子。 深度学习是机器学习的众多方法之一。其他方法包括决策树学习、归纳逻辑编程、聚类、强化学习和贝叶斯网络等。...每个图层挑选一个特定的要学习的特征,例如图像识别中的曲线/边缘。正是这种层次才给了深度学习这个名字,深度是通过使用多层而不是单层创建的。
前言 – 人工智能教程 https://www.captainbed.cn/lzx 第一部分:人工智能、机器学习与深度学习概述 1.1 人工智能的概念与发展 人工智能(Artificial Intelligence...线性回归是监督学习的一种常见方法,特别适用于预测连续值。 1.3 深度学习的基础与应用 深度学习(Deep Learning, DL)是机器学习的一个分支,主要基于多层神经网络。...第三部分:深度学习的核心原理 3.1 人工神经网络的结构与工作原理 人工神经网络(ANN)是深度学习的基础,模拟了人脑神经元的工作方式。...选择合适的学习率可以加快模型的收敛速度,并提升最终的性能。 第六部分:未来发展与挑战 6.1 人工智能的未来趋势 AI的发展方向可能包括自监督学习、联邦学习和生成对抗网络(GAN)等新兴技术。...结论 人工智能、机器学习和深度学习是现代科技的重要组成部分,正深刻影响着各个行业的发展。从理论到实践,再到未来的发展趋势,AI技术的发展为我们提供了前所未有的工具来解决复杂的问题。
小编说:随着AlphaGo战胜李世石,人工智能和深度学习这些概念已经成为一个非常火的话题。人工智能、机器学习与深度学习这几个关键词时常出现在媒体新闻中,并错误地被认为是等同的概念。...本文将介绍人工智能、机器学习以及深度学习的概念,并着重解析它们之间的关系。本文将从不同领域需要解决的问题入手,依次介绍这些领域的基本概念以及解决领域内问题的主要思路。...深度学习领域主要关注如何搭建智能的计算机系统,解决人工智能中遇到的问题。计算神经学则主要关注如何建立更准确的模型来模拟人类大脑的工作。 总的来说,人工智能、机器学习和深度学习是非常相关的几个领域。...人工智能、机器学习以及深度学习之间的关系图 人工智能是一类非常广泛的问题,机器学习是解决这类问题的一个重要手段。深度学习则是机器学习的一个分支。...在很多人工智能问题上,深度学习的方法突破了传统机器学习方法的瓶颈,推动了人工智能领域的发展。 本节部分内容参见:Goodfellow I, Bengio Y, Courville A.
2015 年结束了,是时候看看 2016 年的技术趋势,尤其是关于深度学习方面。新智元在 2015 年底发过一篇文章《深度学习会让机器学习工程师失业吗?》,引起很大的反响。...的确,过去一年的时间里,深度学习正在改变越来越多的人工智能领域。...深度学习,或者更宽泛地说——使用联结主义架构的机器学习算法,可能会让机器学习算法变成过去时,因为深度学习算法还远远不是饱和状态。...这很可能让很多机器学习算法接近出局的边缘。 那么,2016 年是否能看作深度学习正式统治人工智能的一年?如果是这样,我们又能为此做好什么准备?...但是深度学习的门槛还是非常高,尤其对于互联网安全公司来说,他们其实并不使用人工智能工具(只有很少的解决方案使用了传统的机器学习技术)。所以深度学习要在安全领域得到大规模应用,还会经过很多年的时间。
随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。...本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。 1. 了解深度学习基本概念 在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。...这些概念是深度学习的基础,对于理解深度学习的原理和应用至关重要。 2. 学习编程语言和工具 深度学习需要编程实现,因此你需要掌握一门编程语言,如Python。...此外,你还需要熟悉一些深度学习框架,如TensorFlow、PyTorch等。这些框架提供了丰富的深度学习库和工具,方便你进行模型构建、训练和调优。 3....总结 深度学习是一个充满挑战和机遇的领域,通过掌握基本概念、编程语言和工具、数据预处理和特征工程、模型构建和调优以及实践项目和应用等步骤,你可以逐渐入门深度学习并取得良好的学习效果。
机器学习与深度学习的比较 现在您已经对机器学习和深度学习有了一个概述,下面我们将学习更重要的几点并比较这两种技术。 数据依赖性 深度学习与传统机器学习最重要的区别在于它的性能随着数据规模的增长而增长。...当数据量很小时,深度学习算法的表现并不好。这是因为深度学习算法需要大量的数据来训练。另一方面,传统的机器学习算法与他们的手动规则在这种场景下占据优势。下面的图片总结了这种情况。...image.png 硬件依赖 与传统的机器学习算法可以在低端机器上运行不同,深度学习算法在很大程度上取决于高端机器。这是因为深度学习算法需要用到GPU,这是其工作的一个重要组成部分。...深度学习算法尝试从数据学习高级特征。这是深度学习中非常独特的一部分,也是与传统机器学习的最大的区别。因此,深度学习减少了为每个问题开发新的特征提取器的工作。...与之不同,通过深度学习的方法,您可以端到端地完成这个过程。例如,在一个YOLO网络(一种深度学习算法)中,你可以传入一个图像,它就会给出对象的名称和位置。
前言 – 人工智能教程 https://www.captainbed.cn/lzx 1. 引言 1.1 人工智能的概念与历史 人工智能(AI)是模拟人类智能的技术和理论的集合。...1.2 机器学习与深度学习的演进 机器学习是人工智能的一个分支,它让计算机通过数据来学习和改进。早期的机器学习算法,如线性回归和决策树,依赖于统计模型和简单规则。...线性回归适用于输入变量与输出变量之间存在线性关系的情况。 4. 深度学习 4.1 深度学习的背景与发展 深度学习是机器学习的一个子领域,它利用多层神经网络来学习和处理数据。...深度学习的发展得益于计算能力的提升和大数据的普及。与传统的机器学习算法相比,深度学习能够自动从原始数据中提取特征,特别适用于图像、语音、自然语言处理等领域。...4.4 深度学习的训练与优化 深度学习模型的训练依赖于反向传播算法和优化器。反向传播通过计算损失函数相对于每个权重的梯度,指导权重的更新方向,从而逐步减小预测误差。
深度学习作为人工智能领域非常重要的一类技术实现方式,已经是目前大多数以AI为核心研究能力的企业的必修课程了。 我听过很多没有读过研究生或博士课程的同学跟我诉苦,觉得深度学习非常难,感觉没有着手点。...如果想要做一个全面的了解,而只想画花十几个小时的话,那就把深色的部分了解一遍就可以了,至少可以把深度学习可以做的事情在各个领域的实现思路做个原理性了解是没问题的。...深度强化学习方面: 强化学习是比较难的部分,也是传统人工智能所研究的范畴。现在强化学习和深度学习结合到了一起,焕发了新的活力——它也是AlphaGO所基于的技术。...深度强化学习旨在训练机器人能够在复杂环境中自己学到一套高质量的行动策略,并最终达成一个我们设定的目标。这是人工智能领域中永恒的研究话题。 ?...通常从这个时候开始到最后可以成为一名合格的深度学习工程师需要6个月到12个月的时间,主要视个人的工程经验和学习能力而定,当然工程经验好的人会更占便宜一些。
人工智能、机器学习与深度学习,每天都有它们的新闻。包括新的技术、新的应用、新的挑战、新的机遇。 人人都在谈,人人都在看,那究竟什么是人工智能、机器学习与深度学习呢?...RapidMiner用下图解释了人工智能、机器学习与深度学习。 ? 从图可获得这些信息 1 包含关系 机器学习是人工智能一个活跃的子集,而深度学习又是机器学习一个热门的子集。...2 关注层面 人工智能是指使用电脑模拟人行为的任何科学与技术。 机器学习是人工智能的子集,给电脑喂数据,从数据中学习,达到性能改善和提升的目标。 深度学习是机器学习的子集,基于多层神经网络进行学习。...人工智能、机器学习、深度学习的主要关注点,总结如下: 人工智能:机器学习、自然语言理解、语义分析、计算机视觉、机器人、优化和模拟等; 机器学习:深度学习,支持向量机、决策树、贝叶斯学习、K-均值聚类、...关联规则学习、回归等; 深度学习:ANN、CNN、RNN、LSTM、DBN等。
1.准备数据 手写数字识别的特征集是一组数值为0-9,大小为 28 * 28 矩阵的图片, 标签为与之对应的数字: 数据下载链接: 手写数字识别数据集 2.将数据格式化为 npz 文件 """ 将图片和标签整理为...test_num_writer.close() 3.训练 采用交叉熵作为损失函数, 28* 28 的784个像素值作为特征向量, 这种训练方式很暴力, 后期如果有其他更精巧的训练方式再来补充, 大家可以先把这种训练当成深度学习中的...hello world """ 手写数字识别(以交叉熵为激活函数的深度学习) """ import torch import torch.nn as nn import torch.nn.functional...开始训练 # 设置学习率为 0.1 eta = 0.1 # 调用封装好的模型 model = Model() # 开始进行训练 model.train() # 损失函数采用 交叉熵作为损失函数 loss_fn...nn.CrossEntropyLoss() # 构建优化器, 采用 随机梯度下降法(Stochastic Gradient Descent) # 调用 model.parameters() 传入参数和学习率
在深度学习领域,模型解释和可解释性人工智能(XAI)正变得越来越重要。理解深度学习模型的决策过程对于提高模型的透明度和可信度至关重要。...本文将详细介绍如何使用Python实现模型解释和可解释性人工智能,包括基本概念、常用方法、代码实现和示例应用。...目录 模型解释与可解释人工智能简介 常用模型解释方法 LIME(Local Interpretable Model-agnostic Explanations)实现 SHAP(SHapley Additive...模型解释与可解释人工智能简介 1.1 模型解释概念 模型解释是指理解和解释机器学习模型的预测结果,特别是黑箱模型(如深度学习模型)的内部工作原理。...1.2 可解释人工智能的意义 可解释人工智能(XAI)旨在使人工智能系统的决策过程透明和可理解。
深度学习与强化学习 随着 DeepMind 公司的崛起,深度学习和强化学习已经成为了人工智能领域的热门研究方向。...除了众所周知的 AlphaGo 之外,DeepMind 之前已经使用深度学习与强化学习的算法构造了能够自动玩 Atari 游戏的 AI,并且在即时战略游戏 StarCraft II 的游戏 AI 构建上做出了自己的贡献...本篇 PPT 将会从强化学习的一些简单概念开始,逐步介绍值函数与动作值函数,以及 Q-Learning 算法。然后介绍深度学习中卷积神经网络的大致结构框架。...最后将会介绍卷积神经网络是如何和强化学习有效地结合在一起,来实现一些简单的游戏 AI。 之前也写过一份PPT《当强化学习遇见泛函分析》,两份 PPT 有一些重复的地方,读者选择一些看即可。...之前文章从强化学习的定义出发,一步一步地给读者介绍强化学习的简单概念和基本性质,并且会介绍经典的 Q-Learning 算法。
梯度下降法在机器学习中应用广泛,尤其是在深度学习中。AdaDelta,AdaGrad,Adam,NAG等改进的梯度下降法都是用梯度构造更新项,区别在于更新项的构造方式不同。...基本概念 1.有监督学习与无监督学习 根据样本数据是否带有标签值,可以将机器学习算法分成有监督学习和无监督学习两类。...5.过拟合与欠拟合 欠拟合也称为欠学习,直观表现是训练得到的模型在训练集上表现差,没有学到数据的规律。...对于分类问题,如果决策树深度够大,它可以将训练样本集的所有样本正确分类。 决策树的训练算法是一个递归的过程,首先创建根节点,然后递归的建立左子树和右子树。...为了消掉冗余,加上如下约束: 然后使用拉格朗日乘数法,最后归结于求解矩阵的特征值与特征向量: LDA是有监督的学习算法,在计算过程中利用了样本标签值,是线性模型。
在深度学习领域,模型解释和可解释性人工智能(XAI)正变得越来越重要。理解深度学习模型的决策过程对于提高模型的透明度和可信度至关重要。...目录模型解释与可解释人工智能简介常用模型解释方法LIME(Local Interpretable Model-agnostic Explanations)实现SHAP(SHapley Additive...模型解释与可解释人工智能简介1.1 模型解释概念模型解释是指理解和解释机器学习模型的预测结果,特别是黑箱模型(如深度学习模型)的内部工作原理。解释可以是局部的(针对单个预测)或全局的(针对整个模型)。...总结本文介绍了使用Python实现深度学习模型的解释和可解释性人工智能(XAI),详细讲解了LIME和SHAP两种方法的实现过程。...通过这些方法,我们可以理解深度学习模型的决策过程,提高模型的透明度和可信度。希望本文能够帮助你掌握模型解释技术,并应用到实际的深度学习任务中。
领取专属 10元无门槛券
手把手带您无忧上云