首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习实战:AlexNet实现花图像分类 | 技术创作特训营第一期

    LeNet-5创造了卷积神经网络,但是LeNet-5并没有把CNN发扬光大,是CNN真正开始走进人们视野的是今天要介绍的——AlexNet网络。AlexNet网络源自于《ImageNet Classification with Deep Convolutional Neural Networks》这篇论文。作者是是Hinton率领的谷歌团队(Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton),Hinton在上一篇博客我们也曾介绍过,他是深度学习之父,在人工智能寒冬时期,Hinton一直就默默地坚持深度网络的方向,终于在2006年的《Science》上提出了DNN,为如今深度学习的繁荣奠定了基础。AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%error rate, 获得第二名的方法error rate 是 26.2%,可以说差距是非常的大了,足以说明这个网络在当时给学术界和工业界带来的冲击之大。

    05

    深度学习入门系列1:多层感知器概述

    深度学习入门系列1:多层感知器概述 深度学习入门系列2:用TensorFlow构建你的第一个神经网络 深度学习入门系列3:深度学习模型的性能评价方法 深度学习入门系列4:用scikit-learn找到最好的模型 深度学习入门系列5项目实战:用深度学习识别鸢尾花种类 深度学习入门系列6项目实战:声纳回声识别 深度学习入门系列7项目实战:波士顿房屋价格回归 深度学习入门系列8:用序列化保存模型便于继续训练 深度学习入门系列9:用检查点保存训练期间最好的模型 深度学习入门系列10:从绘制记录中理解训练期间的模型行为 深度学习入门系列11:用Dropout正则减少过拟合 深度学习入门系列12:使用学习规划来提升性能 深度学习入门系列13:卷积神经网络概述 深度学习入门系列14:项目实战:基于CNN的手写数字识别 深度学习入门系列15:用图像增强改善模型性能 深度学习入门系列16:项目实战:图像中目标识别 深度学习入门系列17:项目实战:从电影评论预测情感 深度学习入门系列18:循环神经网络概述 深度学习入门系列19:基于窗口(window)的多层感知器解决时序问题 深度学习入门系列20:LSTM循环神经网络解决国际航空乘客预测问题 深度学习入门系列21:项目:用LSTM+CNN对电影评论分类 深度学习入门系列22:从猜字母游戏中理解有状态的LSTM递归神经网络 深度学习入门系列23:项目:用爱丽丝梦游仙境生成文本

    02
    领券