首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

海量数据, 为何总是 海量垃圾 ?!

2017.9.10, 深圳, Ken Fang 雷军说:我拥有海量数据, 却不知道怎么用?每年, 花在存储海量数据的费用, 也是海量;足以使企业破产⋯ 为何会如此?...当我们将所谓 “海量数据分析” 的神秘面纱给揭开时, 打破 “海量数据分析” 的神话, 就会很容易的明白, 真正的问题到底出在哪?为何谷歌能做到的, 我们却做不到?...大家都明白的 Common Sense: 做海量数据分析, 要先能建立数据模型;有了数据模型, 我们才能从 “海量数据中, 去提炼出 “有用” 的数据。...海量数据分析最关键、最重要的ㄧ步:将海量数据 “转换” 为有用的数据。 而数据模型建立的前提是: @ 要能先分析出, 产生数据背后的 “用户的目的” 。例如:用户是基于什么样的社会事件?天灾?...这样的数据, 再如何的 “海量”, 也根本没法经由 “数据分析师”, 使用任何的数据分析工具, 建立出任何有效的数据模型;海量数据将永远没办法转换为有用的数据。 为什么谷歌能做得到?

95850
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    什么是海量数据 海量数据与大数据的关系

    在人们还没有搞明白大数据的情况下,又出现了一个海量数据海量数据与大数据的关系是什么,他们有什么关联吗?还是大数据的升级版才是海量数据,今天来聊一下海量数据与大数据的关系吧!...image.png 1、什么是海量数据,什么是大数据 所谓的海量数据从字面上理解就是数据多到已经用大海来形容了,现实中也确实如此。...2、海量数据与大数据的关系 海量数据与大数据的关系其实是相互的,海量数据可以包含在大数据里面,同样大数据也可以包含在海量数据里面。...海量数据需要找合适的数据来进行计算时,大数据也可以将海量数据分解并帮助其计算完成。所以海量数据与大数据的关系是相互的,在对方有困难的时候都会伸出手来帮助,海量数据与大数据的关系一定是不错的。...海量数据与大数据通俗的说就是,海量数据有时候不能一个人完成的事情会找帮手一起完成,而大数据则是喜欢把一个大任务分解成多个小任务再逐一完成。

    4K30

    BitSet处理海量数据

    关于BitSet BitSet是java.util下包下,JDK1.0中就已经引入这个数据结构。 如果你对数据结构的"位图"比较熟悉,那么BitSet就很好理解了。...位图定义了数据的存在性可以用bit位上的1和0来表示,一个bit有两个值,0或1。而BitSet正是因为采用这种数据结构,在判断“数据是否存在”的场景会经常出现。...在Java中,判断某个数是否存在有很多种方法,为什么会选用BitSet呢?其重要的原因是它可以有效的降低内存的使用量。...然后遍历全部用户,通过list.contains()来进行判断(这可能就是一直没有接触过海量数据造成的),那么效果就不用说了,挺低的。...bitIndex) { return bitIndex >> ADDRESS_BITS_PER_WORD; } 这里ADDRESS_BITS_PER_WORD的值是6.因为在Java

    1.5K40

    海量数据处理

    海量数据处理是基于海量数据上的存储、处理、操作。 所谓海量,就是数据量很大,可能是TB级别甚至是PB级别,导致无法一次性载入内存或者无法在较短时间内处理完成。...但是 面向结构化数据存储的关系型数据库已经不能满足当今互联网数据快速访问、大规模数据分析挖掘的需求。 它主要缺点: 1) 对于半结构化、非结构化的海量数据存储效果不理想。...像电子邮件、 超文本、标签(Tag)以及图片、音视频等各种非结构化的海量数据。 2)关系模型束缚对海量数据的快速访问能力: 关系模型是一种按内容访问的模型。...3)在海量规模下, 传统数据库一个致命弱点, 就是其可扩展性差。...主要特性:   ● 分布式   ● 基于column的结构化   ● 高伸展性 2 海量数据处理 海量数据处理就是如何快速地从这些海量数据中抽取出关键的信息,然后提供给用户

    1.4K10

    海量数据TopK问题

    # 海量数据TopK问题 在大规模数据处理中,经常会遇到这类问题:在海量数据中找到出现频率/数值最大的前K个数 本文主要提供这类问题的基本解决方法 假设这样一个场景,一个问题阅读量越高,说明这个问题越有价值...,越应该推送给用户 假设数据量有1亿,取Top100 最容易想到的方法是将全部数据进行排序,但如果数据量太大 ,这显然是不能接受的。...第三种方法是分治法,将1亿个数据分成100份,每份100万个数据,找到每份数据中最大的100个(即每份数据的TopK),最后在剩下的100*100个数据里面找出最大的100个。...如果100万数据选择足够理想,那么可以过滤掉1亿数据里面99%的数据。...100万个数据里面查找最大的100个数据的方法如下:用快速排序的方法,将数据分为2堆,如果大的那堆个数N大于100个,继续对大堆快速排序一次分成2堆,如果大的那堆个数N大于100个,继续对大堆快速排序一次分成

    1.3K30

    海量数据处理

    海量数据,不能一次加载到内存中 海量数据topK(最大和最小k个数),第k大,第k小的数 海量数据判断一个整数是否存在其中 海量数据找出不重复的数字 找出A,B两个海量url文件中共同的url 10亿搜索关键词中热度最高的...k个 海量数据topK 最大K使用最小堆,最小K使用最大堆,这里以最大K为例 海量数据hash分块 维护最小堆的K个数据数据容器 堆中数据是topK大的数据,堆顶的数据是第K大数据 先将海量数据hash...* K个数据,然后对这些数据再进行排序,或者再次通过维护最小堆 变形 第K大不只是topK,此时堆顶数据即是 只求最大或最小 海量数据不仅仅是整数,也可以是字符串 海量数据按照出现的次数或者频率排序,...topK 海量数据按照出现的次数或者频率排序,topK 先将海量数据hash再取模m,分成m个小文件,hash(num)%m 扫描每个小文件的数据,通过hash_map建立值和频率的键值对 以出现的频率维护最小堆的...K个数据数据容器 遍历每个小文件中剩余的数据,与堆顶的数据进行比较,更新最小堆中的数据 生成m * K个数据,然后对这些数据再进行排序,或者再次通过维护最小堆 找出A,B两个海量url文件中共同的url

    1.4K41

    海量数据处理

    针对海量数据的处理,可以使用的方法非常多,常见的方法有hash法、Bit-map法、Bloom filter法、数据库优化法、倒排索引法、外排序法、Trie树、堆、双层桶法以及MapReduce法...hash数据结构中的数据对外是杂乱无章的,因此其具体的存储位置以及各个存储元素位置之间的相互关系是无法得知的,但是却可以在常数时间里判断元素位置及存在与否。...上面的数据排序后的结果为1101001011。   ...位图法排序的时间复杂度是O(n),比一般的排序快,但它是以时间换空间(需要一个N位的串)的,而且有一些限制,即数据状态不是很多,例如排序前集合大小最好已知,而且集合中元素的最大重复次数必须已知,最好数据比较集中...4.数据库优化法 这种方法不细致说,因为不是直接的算法,而是通过优化数据库(优化数据库其实也是用的算法)的方式。

    2.1K140

    JAVA关闭OutputStream

    参考链接: Java OutputStream类 2016年03月23日 12:47:44  今天做项目,在发送完图片之后,关闭了OutputStream,发现程序抛出异常:socket isclosed...软件只需要关闭发送图片的I/O流,不能关闭socket。因此在网上查了一下,发现关闭OutputStream的同时socket也会关闭。  ...比如使用ZIP压缩发送和接收数据的例子:发送方:在Socket的OutputStream上封装GZIPOutputStream或DeflaterOutputStream1、发送数据2、发送数据结束标志(...此时需要关闭GZIPOutputStream或DeflaterOutputStream,否则不保证全部数据都被发送至对方)3、接收应答4、结束接收方:在Socket的InputStream上封装GZIPInputStream...或InflaterInputStream1、接收数据2、收到数据结束标志3、发送数据处理结果4、结束。

    1.1K10

    mongodb海量数据CRUD优化

    按照正常的做法,需要跳过99*100条数据,非常大的代价。...换一个角度思考,因为数据是有序的,因此第100页的数据的最后修改时间是小于第99页最小的修改时间,查询时加上这个条件,就可以直接取符合条件的前100条即可。 3....另外,FindAll一次性加载数据到内存,整个速度也会比较慢,需要等待所有数据进入内存后才能开始处理。 另外一个误区是,分页查询,依次处理。分页查询可以有效减少服务器负担,不失为一种可行的方法。...但是就和上面分页说的那样,分页到后面的时候,需要skip掉前面的数据,存在无用功。...dataList, thingId2Resource); } 更推荐的做法是,采用mongoTemplate的steam方法,返回CloseableIterator迭代器,读一条数据处理一条数据

    1.7K30

    海量数据处理:算法

    海量信息即大规模数据,随着互联网技术的发展,互联网上的信息越来越多,如何从海量信息中提取有用信息成为当前互联网技术发展必须面对的问题。...在海量数据中提取信息,不同于常规量级数据中提取信息,在海量信息中提取有用数据,会存在以下几个方面的问题: (1)数据量过大,数据中什么情况都可能存在,如果信息数量只有20条,人工可以逐条进行查找、比对...数据库优化法 互联网上的数据一般都被存储在数据库中,很多情况下,人们并非对这些海量数据本身感兴趣,而是需要从这些海量数据中提取出对自己有用的信息。...(2)数据分区 进行海量数据的查询优化,一种重要方式就是如何有效地存储并降低需要处理的数据规模,所以可以对海量数据进行分区操作提高效率。...(12)使用采样数据进行数据挖掘 基于海量数据数据挖掘正在逐步兴起,面对着超海量数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。

    90320

    Mysql海量数据处理

    一说海量数据有人就说了直接用大数据,那只能说不太了解这块,为此我们才要好好的去讲解一下海量的处理 海量数据的处理分为两种情况 1)表中有海量数据,但是每天不是很快的增长 2)表中有还流量数据,而且每天很快速的增长...海量数据的解决方案 1)使用缓存 2)页面静态化技术 3)数据库优化 4)分离数据库中活跃的数据 5)批量读取和延迟修改 6)读写分离 7)使用NoSql和Hadoop等技术 8)分布式部署数据库...9)应用服务和数据库分离 10)使用搜索引擎搜索数据库中的数据 11)进行业务的拆分 千万级数数据,mysql实际上确实不是什么压力,InnoDB的存贮引擎,使用B+数存储结构,千万级的数据量...,将我们存放在同一个数据库中的数据分散的存放到多个数据库中,以达到分散单台数据库负载的效果,即为分库分表 分表 把一张表按一定的规则分解成N个具有独立存储空间的实体表。...,写操作效率提高了 * 查询一次的时间短了 * 读写缩影的数据变小 * 插入数据需要重新建立索引的数据减少 分库 将一个应用中对应的一个数据库分解成多个数据库,且可以这多个数据库可以存在同一个服务器上

    1.2K20

    海量数据处理分析

    那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考: 一、选用优秀的数据库工具 现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般 使用...三、对海量数据进行分区操作 对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区, 不同的数据库有不同的分区方式,不过处理机制大体相同。...七、分批处理 海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据 量。...十六、 使用采样数据,进行数据挖掘 基于海量数据数据挖掘正在逐步兴起,面对着超海量数据,一般的挖掘软件或算法往往 采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率...海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究

    1K20

    海量数据处理-Python

    文章目录 海量数据处理-Python 海量数据处理的困难 大文件生成 空间受限 分块读取 文件拆分提取 拆分小文件 比较小文件 通过hash拆分文件 拆分小文件-依据hash 求取IP前TopK(还是遍历所有文件并聚合...) 求取最大IP,每个文件求最大值 构造字典-针对重复较多的键 时间受限 Bitmap算法 布隆过滤器 字典树实现 海量数据处理-Python 有参考如下资源: 【原创】Python处理海量数据的实战研究...python3利用归并算法对超过内存限制的超大文件进行排序 Trie树的构建和应用 海量数据处理技巧 Python实现字典树 Python bitmap数据结构算法具体实现 python...海量数据处理的困难用一句话概括,就是时空资源不够。...具体来说, 空间受限:无法将海量数据一次性读入内存; 时间受限:无法在有限时间内,完成针对海量数据的某项处理工作。

    1.4K20

    海量数据处理方案

    什么是海量数据? 所谓的海量数据从字面上理解就是数据多到已经用大海来形容了,它指的就是数据量太大,无法在较短时间内迅速解决,无法一次性装入内存。...海量数据处理面临的问题 我们要想对海量数据实现排序、查询、求 TOPK、去重等操作,我们没法直接把数据一次性加载到内存中,然后一次性进行处理,因为海量数据往往面临以下两个问题: 单台机器内存不够; 单台机器对数据的处理速度过慢...海量数据处理的核心思想 基于海量数据处理面临的上述两个问题,我们可以很容易想到一些对于海量数据进行处理的方案: 不必把数据一次性加载到内存中,而是通过分批处理的方式,把外存中的数据加载到内存中进行处理;...总结 对于海量数据处理问题,在实际情况中,我们可以先考虑单机内存足够处理的情况下需要采用何种方式; 当我们找到单机内存充足情况的处理方案以后,再通过一些海量数据的通用处理手段,例如:外存分批读取、分片、...多机并行处理等方式,最终达到成功处理海量数据的目标。

    19620

    海量数据查询优化

    这是我面试的一家数据维护业务公司的面试题,虽然这个职位并不是我所期望的Java开发的工作,自己还是想把握好每一次机会,最后还是去尝试了一下。...由于平时开发的应用数据量比较小,不太关注性能优化的问题,所以不知如何作答,答得不好,很是郁闷。从网上搜索出海量数据查询优化的两篇文章,转载下来,学习学习。...数据库优化查询计划的方法 数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行、企业、政府等部门最为重要的计算机应用之一。...解决问题 下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。 1.合理使用索引 索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。...30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理

    1.1K20

    海量数据查询方案mysql_Mysql海量数据存储和解决方案之二—-Mysql分表查询海量数据

    关键词:分库分表,路由机制,跨区查询,MySQL 数据变更,分表数据查询管理器与线程技术的结合,Cache 前面已经讲过Mysql实现海量海量数据存储查询时,主要有几个关键点,分表,分库,集群,M-S,...分库是如何将海量的Mysql数据放到不同的服务器中,分表则是在分库基础上对数据现进行逻辑上的划分。...常用解决方案如下: MySQL master/slave:只适合大量读的情形,未必适合海量数据。MySQL cluster:提供的可能不是大家想要那种功能。...MySQL对于海量数据按应用逻辑分表分数据库,通过程序来决定数据存放的表。但是 跨区查询是一个问题,当需要快速查找一个数据时你得准确知道那个数据存在哪个地方。...海量数据查询时,还有很重要的一点,就是Cache的应用。不过是不是Cache在任何时候都是万能贴呢?不一定。Cache也命中率,维护等问题。

    1.8K10

    如何优雅关闭Java线程?

    当其中一一个任务找到了解决方案时,所有其他仍在搜索的任务都将被取消错误 网页爬虫程序搜索相关的页面,并将页面或摘要数据保存到硬盘。...当一个爬虫任务 发生错误时(例如,磁盘空间已满),那么所有搜索任务都会取消,此时可能会记录它们的当前状态,以便稍后重启关闭 当一个程序或服务关闭,须对正在处理和等待处理的工作执行某种操作。...在平缓的关闭过程中,当前正在执行的任务将继续执行直到完成,而在立即关闭过程中,当前的任务则可能取消Java中没有安全的抢占式方法停止线程,只有一些协作式机制,使请求取消的任务和代码都遵循一种既定协议。...但Java提供中断(Interruption)这种协作机制,能使一个线程终止另一个线程的当前工作。很少会希望某任务、线程或服务立即停止,因为这种立即停止会使共享的数据结构处于不一致状态。...出自和面试官讲完Java线程状态,当场发了offer! Java线程进入Terminated前提是线程进入RUNNABLE。而线程当前可能为任何状态,如休眠。

    1.4K10
    领券