首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

浮点限制

浮点限制是指在计算机中表示和处理实数时所遇到的精度问题。计算机使用二进制来表示数字,而有限的二进制精度导致浮点数的表示不能与实际的实数完全一致。这可能导致一些计算中出现误差。

浮点数的表示方法是将一个数的符号位、指数位和尾数位组合在一起表示。其中,符号位表示数的正负,指数位表示数值的大小,尾数位表示数值的精度。由于计算机的存储空间是有限的,因此浮点数的表示范围和精度也是有限的。

在计算机中,常用的浮点数表示方法是IEEE 754标准。该标准定义了一种64位的双精度浮点数表示方法,其中48位用于表示尾数,11位用于表示指数,1位用于表示符号位。这种表示方法可以表示的数值范围约为1.8 x 10^308到2.2 x 10^-308,精度约为15-17位有效数字。

由于浮点数的表示方法的限制,在计算机中进行浮点数运算时可能会出现一些误差。这些误差可能会导致计算结果不准确,因此在进行浮点数运算时需要注意这些限制。

总之,浮点限制是计算机表示和处理实数时所遇到的一种精度问题。为了避免这种问题,可以使用更高精度的浮点数表示方法,或者使用其他数值表示方法,例如定点数表示方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

浮点

2、浮点数二进制表示 基数为2,只保留符号位(s)、尾数(m)、指数(e): ? 3、浮点数格式: 单精度、双精度和扩展精度。...双精度浮点数为64位: 对应于C语言中的double。 4、规格化 当指数位E表示的二进制序列不全0也不全1时,该浮点数为规格化形式。...对于规格化浮点数,IEEE—754标准规定尾数位小数点左侧的隐含位为1,此时m的计算公式为: m=| 1.M | M=“1001000….0”,1.M=1.1001000…0,带入上式得到: m=1+...)、尾数m的最小值为1,对应的M全为0,最大值为2-2^(-23) (3)、规格化浮点数能表示的数绝对值最大值为(2-2^(-23))x 2^(127)。...单精度规格化浮点数计算公式为: ? 6、非规格化 当E的二进制位全部为0时,该浮点数为非规格化形式。指数位e和m为: ?

2.1K30
  • 【mysql】浮点类型

    浮点类型 1. 类型介绍 浮点数和定点数类型的特点是可以处理小数,你可以把整数看成小数的一个特例。因此,浮点数和定点数的使用场景,比整数大多了。...MySQL支持的浮点数类型,分别是 FLOAT、DOUBLE、REAL。 FLOAT 表示单精度浮点数; DOUBLE 表示双精度浮点数; [在这里插入图片描述] REAL默认就是 DOUBLE。...MySQL 存储浮点数的格式为:符号(S)、尾数(M)和 阶码(E)。因此,无论有没有符号,MySQL 的浮点数都会存储表示符号的部分。...精度误差说明 浮点数类型有个缺陷,就是不精准。下面我来重点解释一下为什么 MySQL 的浮点数不够精准。...在编程中,如果用到浮点数,要特别注意误差问题,因为浮点数是不准确的,所以我们要避免使用“=”来判断两个数是否相等。

    2.5K20

    浮点

    使用浮点类型可以表示带小数部分的数字,计算机将这样的值分为两部分存储,一部分表示值,一部分对值进行放大或缩小,比如3.1415926和31.415926 处了小数点位置不一样,其他都一样,可以将值表示为...0.31415926 缩放因子为10 31.415926 缩放因子为100 只不过计算机存放缩放因子是二进制 因此是2的次幂 不是10 浮点的书写方式 小数点 E表示法 3.45E6 = 3.45* 10...^6 6被成为指数 3.45被称为尾数 这里要区分负尾数 和 负指数 负指数表示乘以10^(-x)相当于除以10^x e+n表示小数点向右移动n位 E~n表示小数点向左移动n位 浮点的有效位 该系统保证...我们前面谁说过浮点数据存储时是指数和小数分开存储的。...浮点常量 默认情况下,程序把类似8.24 2.4E8这样的浮点存储为浮点型,如果希望是float类型,则用float后缀(f或F) 优点 与整数相比 浮点可以表示整数之间的值 其次因为有缩放因子 他们可以表示的范围很大

    24920

    非规则浮点数和规则浮点

    本文由量化、数据类型、上溢和下溢衍生,将浮点数看作是实数域的一种量化方式,分析浮点数,尤其是非规则浮点数和规则浮点数之间的差异。 0....这里依旧将浮点数看作是一种量化方式,将连续的不可数的集合映射到有限的集合上去。本文结合单精度浮点数讨论,双精度浮点与之类似。...已有多位博主撰写过关于非规则浮点数(Denormalized Number)和规则浮点数之间的区别,这里首推卢钧轶的你应该知道的浮点数基础知识。...浮点数的具体定义在量化、数据类型、上溢和下溢中已经给出。 浮点型(32比特浮点) 参考维基百科, 32比特浮点数的存储方式表示如下图。 ?...非规则浮点数的问题 非规则浮点数的表示能力依旧是有限的,同时由于其与规则浮点数不相同的定义方式,会导致计算速率方面的问题,即 非规则浮点数的计算速度慢于规则浮点数(一般而言)

    2.2K20

    浮点峰值那些事儿

    浮点峰值的计算,一般是计算单位时间内,乘法和加法的最大总吞吐量,单位是GFLOPS或者TFLOPS,表示每秒钟计算乘法和加法的总次数。...SNB架构示意图如下: 六个dispatch ports,其中port0和port1各有一条向量乘法(256-FP MUL)和向量加法(256-FP Add),即一个周期内,SNB架构可以吞吐一条浮点向量乘法和浮点向量加法...由于AVX指令集还不支持融合乘加FMA,浮点峰值计算只能使用这两条指令的总和吞吐量。 综上所述,SNB架构的理论浮点峰值就等于(8Mul + 8Add) * 核心频率 * 核心数。...我们这个测试程序已经完整地利用了浮点乘加的吞吐能力,所以超线程并不带来好处。...同样的方法也可以测试ARM架构的CPU浮点峰值,但是需要注意ARM NEON指令包含两种乘加方式:向量乘向量,以及向量乘标量。

    1.9K50

    浮点数详解

    1.概念         关于浮点数,很多人只是知道浮点数就是小数,简单来说,因为所有的小数都可以用科学计数法来表示,而小数点可能也会随之发生“浮动”,故称之为浮点数。...举个例子,有这样一个数字:1999.99,如果用科学计数法表示则为1.99999*10^3,在这个过程中我们很明显地看到了小数点发生了“浮动”,浮点数的名字也由此得来。...2.表示方式         在计算机中,数据都是通过二进制的方式存储的,浮点数也不例外,而任意一个二进制浮点数V可以表示为V=((-1)^S)*M*2^E,其中(-1)^S表示符号位,当S=0时,V为正数...,我们先来看一张图:         在上图中,我们知道了float类型的浮点数就是32位浮点数,double类型的浮点数就是64位浮点数,其中float类型的最高的一位符号位S接着的8位是指数位E,剩下的...例如2^10,它的E是10,所以保存成32位浮点数时必须保存成10+127=137,即10001001。         指数E从内存取出也分三种情况 E不全为0或不全为12.

    1.1K10

    浮点数基础

    浮点数基础 浮点数,是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。...1 浮点数基础知识 ? 浮点数由四部分构成:符号位(Sign Bit)、尾数(Mantissa)、基数(Radix)和指数(Exponent)。...s、m、e分别为符号数、尾数和指数,n为相应的浮点数值。 ? IEEE-754规定了三种浮点数:单精度(float)、双精度(double)和扩展精度。...M为0110表示:二进制.0110 E: 规格化(normalized) 非规格化(denormalized) 2 规格化浮点数 E表示的二进制不全为0也不全为1时该浮点数为规格化浮点数。 ?...s=0 m = 1.5625 e =9 n =55.5112 单精度浮点数的公式可表示为: ? 3非规格化浮点数 E的二进制位全为0时该浮点数为非规格化浮点数。 bias=127 ?

    1.7K10

    PHP浮点

    参考文章,鸟哥的两篇文章外加IEEE 754 PHP 浮点数的一个常见问题的解答 关于PHP浮点数你应该知道的 IEEE 754 / IEEE二进制浮点数算术标准 IEEE 754 全称为,IEEE二进制浮点数算术标准..., 此标准中,规定了浮点数二进制表示的规范: 浮点数二进制表示包括三部分, 符号位, 用1个字节来表示 指数位, 有效数字 如: 单精度浮点数共32位(bit),1bit的符号位,8bit指数位,23bit...有效数字 双精度浮点数共64位(bit),1bit的符号位,11bit指数位,52bit有效数字 浮点数表示为二进制的计算方式是: 浮点数二进制表示学习笔记 整数部分除以2取余,然后再用所得的商除以2取余...浮点数转化为二进制的例子 10.625转化为二进制 整数部分10, 对2求余, 商继续对2求余,直到商为0, 再逆序排列每一步得到的余数 计算 余数 商 10/2 0 5 5/2 1 2 2/2 0 1...看似两个相等的浮点数,其实进行比较时, 可能不想等了。

    1.3K50

    浮点数运算

    所有使用 IEEE 754 标准的编程语言,都存在浮点数运算的精度问题,不论是 C/C++、Java、Ruby,还是 Go、Python,当然 JavaScript/Node.js 也是如此。...01 — 问题 以下是浮点数常见运算出现问题的示例: 0.1 + 0.2 = 0.30000000000000004 0.3 - 0.1 = 0.09999999999999998...02 — 解决 一般解决上述运算精度问题的主要思想是通过将浮点数运算转化为整数运算。...一、直接扩大缩小倍数 比如: ( 0.1 * 10 + 0.2 * 10 ) / 10 = 0.3 这种方式乍一看好像是转化成了整数运算,但其实也是存在问题的,因为其扩大倍数的时候仍然是浮点数运算,...二、通过检测小数的位数转换为整数 上一种方式的软肋在于转换为整数的过程仍然是浮点数运算,然而这种完全是可以通过另一种途径解决。

    1.4K10

    浮点数处理

    浮点数表达 IEEE754标准是用于规范浮点数运算的IEEE标准,用于解决浮点数标准混乱的问题。其被认证后不久,几乎所有的处理器生产商都采用这一标准,极大的推动了软件的发展。...浮点数存储的格式如下: ? float.png 浮点数由符号位,指数位和尾数三个部分组成,表达公式如下式: ?...在IEEE754标准中,主要规定了单精度浮点(float)和双精度浮点(double)两种浮点数: 类型 符号位数 指数位数 尾数位数 单精度浮点(float) 1 8 23 双精度浮点(double)...该标准内还定义了几个特殊值: 特殊值 说明 0 指数部分和尾数部分均为1 无穷大 指数部分为(指数最大值),尾数部分为0 NaN 指数部分为(指数最大值),尾数部分不为0 浮点数计算 浮点数乘法 浮点数的乘法分为以下几个步骤...浮点数加法 浮点数的加法分为以下几个步骤: 对阶:将指数较小的浮点数进行尾数向右移位,指数同步增大,直到两个操作数的指数等 求和:对尾数进行求和 规格化:对指数和尾数做规格化,并对尾数进行舍入 ?

    1.4K20

    浮点数美丽的表象(为什么要慎用浮点数)

    这其实是float累加过程中精度丢失导致的,要理解这点我们首先要理解什么是浮点数。首先我们了解数在计算机中是如何表示的,因为计算机只能理解0和1两个数,所以一切信息都是用二进制表示的。...小数的特点是小数点前后的位数是不固定的,这个小数点是浮动的,这就是浮点数这个名词的由来。...为了表示浮点数,我们可以把一个数拆分成两个部分,数值部分和指数部分,比如11.16可以表示为1116乘以$10^{-2}$ ,0.1表示为1乘以$10^{-1}$。...这就得先理解浮点数的加法是怎么做的。当两个float数相加时,计算机首先会对齐两个数的指数位,向指数位比较大的一个靠拢,这时候比较小的float数的有效数位就要右移。...我们直接不使用浮点型,而是转而用long。用最小的货币单位分来计量,long的取值范围是-9223372036854775808~9223372036854775807,绝对够用了。

    1.1K20

    C51浮点数显示、浮点数表示方法

    C51中的浮点数存储方式 –n年前曾在c51bbs论坛中发布过 Float 浮点形,它是符合IEEE-754标准的单精度浮点形数据,在十进制中具有7位有效数字。...一个符号位表示浮点数是正或负。...浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表 所列的那样分开,例如: 地址 +0 +1 +2...浮点数错误信息 8051没有包含捕获浮点数错误的中断向量,因此,你的软件必须正确响应这些错误情 况。 除了正常的浮点数值,还包含二进制错误值。...,显示一个浮点数要经过若干次浮点运算,没有必要 就不要显示,否则,花在显示上的时间比计算的耗时都要多得多。

    1.5K30
    领券