首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

(X)HTML Strict 下的嵌套规则

该文介绍了在 HTML 4 Strict 和 XHTML 1.0 Strict 下,HTML 标签的嵌套规则。其中包括了不允许在 标签内嵌套 标签必须与

成对出现, 标签必须与 、、 一起出现等规定。这对于网页设计和开发人员来说,需要遵循这些规则,保证网页代码的规范和合法性,从而提高网页的可访问性和用户体验。

09
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    db2 terminate作用_db2 truncate table immediate

    表。 表 2. SQLSTATE 类代码 类代码 含义 要获得子代码,参阅…00 完全成功完成 表 301 警告 表 402 无数据 表 507 动态 SQL 错误 表 608 连接异常 表 709 触发操作异常 表 80A 功能部件不受支持 表 90D 目标类型规范无效 表 100F 无效标记 表 110K RESIGNAL 语句无效 表 120N SQL/XML 映射错误 表 1320 找不到 CASE 语句的条件 表 1521 基数违例 表 1622 数据异常 表 1723 约束违例 表 1824 无效的游标状态 表 1925 无效的事务状态 表 2026 无效 SQL 语句标识 表 2128 无效权限规范 表 232D 无效事务终止 表 242E 无效连接名称 表 2534 无效的游标名称 表 2636 游标灵敏度异常 表 2738 外部函数异常 表 2839 外部函数调用异常 表 293B SAVEPOINT 无效 表 3040 事务回滚 表 3142 语法错误或访问规则违例 表 3244 WITH CHECK OPTION 违例 表 3346 Java DDL 表 3451 无效应用程序状态 表 3553 无效操作数或不一致的规范 表 3654 超出 SQL 限制,或超出产品限制 表 3755 对象不处于先决条件状态 表 3856 其他 SQL 或产品错误 表 3957 资源不可用或操作员干预 表 4058 系统错误 表 415U 实用程序 表 42

    02

    大语言模型的预训练[5]:语境学习、上下文学习In-Context Learning:精调LLM、Prompt设计和打分函数设计以及ICL底层机制等原理详解

    大规模预训练语言模型(LLM)如 GPT-3 是在大规模的互联网文本数据上训练,以给定的前缀来预测生成下一个 token(Next token prediction)。通过预测词的训练目标、大规模数据集以及超高参数量的模型相结合,产生了性能极强的 LLM,它可以 “理解” 任何文本输入,并在其基础上进行“写作”,除此以外,GPT-3 的论文发现,大规模的训练数据会产生一种有趣的新兴行为,称为 In-Context Learning(又称上下文学习,语境学习, ICL),他并不需要调整模型参数,仅用几条下游任务的示例就可以取得极佳的结果。

    04
    领券