首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    独家 | 将时间信息编码用于机器学习模型的三种编码时间信息作为特征的三种方法

    作者:Eryk Lewinson 翻译:汪桉旭校对:zrx 本文约4400字,建议阅读5分钟本文研究了三种使用日期相关的信息如何创造有意义特征的方法。 标签:时间帧,机器学习,Python,技术演示 想象一下,你刚开始一个新的数据科学项目。目标是建立一个预测目标变量Y的模型。你已经收到了来自利益相关者/数据工程师的一些数据,进行了彻底的EDA并且选择了一些你认为和手头上问题有关的变量。然后你终于建立了你的第一个模型。得分是可以接受的,但是你相信你可以做得更好。你应该怎么做呢? 这里你可以通过许多方式跟进。

    03

    Wolfram 技术帮您通过咳嗽音来预测诊断新冠病毒

    声音分类可能是一项艰巨的任务,尤其是当声音样本的变化很小而人耳无法察觉时。机器的使用以及最近的机器学习模型已被证明是解决声音分类问题的有效方法。这些应用程序可以帮助改善诊断,并已成为心脏病学和肺病学等领域的研究主题。卷积神经网络识别COVID-19咳嗽的最新创新以及使用咳嗽记录来检测无症状COVID-19感染的MIT AI模型(https://news.mit.edu/2020/covid-19-cough-cellphone-detection-1029)显示出仅凭咳嗽声就可识别COVID-19患者的一些令人鼓舞的结果。综观这些参考资料,这项任务可能看起来颇具挑战性,就像只有顶尖研究人员才能完成的任务一样。在本文中,我们将讨论如何使用Wolfram语言中的机器学习和音频功能获得这非常有希望的结果。

    03
    领券