二值分类器是机器学习中最常见的分类器。评价的指标也有很多,precision,recall,F1 score等等。ROC曲线也是之一。 ROC,Receiver Operating Characteristic Curve,受试者工作特征曲线。 ROC曲线的横坐标为假阳性率(False Positive Rate,FPR),纵坐标为真阳性率(True Positive Rate,TPR)。
https://github.com/lygttpod/AndroidCustomView/blob/master/app/src/main/java/com/allen/androidcustomview/widget/WaveViewBySinCos.java
为了对模型的效果进行评估,我们就需要各种各样的指标,不同的问题需要不同的指标来评估,而且大部分的指标都是有局限性的,那么,我们就来盘点一下吧。
“前一篇文章介绍了简谐振动激励下的动力学方程理论解,工程应用中的输入激励一般不会是单纯的正/余弦信号。本篇将介绍更一般的求解:Duhamel积分。”
知识点: 准确率(Accuracy),精确率(Precision),召回率(Recall),均方根误差(RMSE)
对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内。这样做的目的是消除数据特征之间的量纲影响,使得不同的指标之间具有可比性,帮助在进行迭代优化(如梯度下降)时更快地收敛至最优解。最常用的归一化方法有以下两种:
在机器学习领域通常会根据实际的业务场景拟定相应的不同的业务指标,针对不同机器学习问题如回归、分类、排序,其评估指标也会不同。
第一部分、 DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT)
分享 动一动手指,分享给向我们一样需要的人 这是一篇有趣的文章,George Dvorsky试图解释算法之于当今世界的重要性,以及哪些算法对人类文明最为重要,如下所示。 1.排序算法 所谓排序,就是使
一篇有趣的文章《统治世界的十大算法》中,作者George Dvorsky试图解释算法之于当今世界的重要性,以及哪些算法对人类文明最为重要。 1 排序算法 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。
一篇有趣的文章《统治世界的十大算法》中,作者George Dvorsky试图解释算法之于当今世界的重要性,以及哪些算法对人类文明最为重要。
作者:Eryk Lewinson 翻译:汪桉旭校对:zrx 本文约4400字,建议阅读5分钟本文研究了三种使用日期相关的信息如何创造有意义特征的方法。 标签:时间帧,机器学习,Python,技术演示 想象一下,你刚开始一个新的数据科学项目。目标是建立一个预测目标变量Y的模型。你已经收到了来自利益相关者/数据工程师的一些数据,进行了彻底的EDA并且选择了一些你认为和手头上问题有关的变量。然后你终于建立了你的第一个模型。得分是可以接受的,但是你相信你可以做得更好。你应该怎么做呢? 这里你可以通过许多方式跟进。
无论怎样,看完这一组动图,你不仅能够感受到数学美丽的一面,同时也会对我们常见的公式定理有更深刻、直观的理解!
人脸识别有四个步骤:人脸检测、人脸对齐、人脸特征提取和特征比较。人脸特征提取是面识别过程中最重要的任务之一。为了提高面识别的准确性,有必要增强模型提取判别性人脸特征的能力。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第24章 DSP变换运算-傅里叶变换 本章节开始进入此教
“振动耐久试验,是在振动台上进行的长时间振动试验。本文及之后的几篇文章将详细介绍振动耐久试验的几种常用试验类型。”
今天遇到朋友发来的一个ui图,询问我如何实现下图这样的效果【vue项目】,(听说是类似LED灯的展示效果),于是便有了今天的小demo,要实现一个类似下图的动效,上面的灯会一直重复滚动,但是这个并不是什么难点,主要在于如何实现这种平滑的曲线,日常我们的开发的div在我们的脑海中通常就是一个网格状,涉及到平滑曲线的往往是图表,于是我们需要找一个方案来完成这种布局(非真实ui图,是完成之后的效果)
之所以会觉得数学不重要,是因为在工作中没有哪行代码会明确表示用了数学中的哪个公式。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第28章 FFT和IFFT的Matlab实现(幅频响应和
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第18章 DSP控制函数-更好用的SIN,COS计算 本
注意:默认情况下,函数scale()对矩阵或数据框的指定列进行均值为0、标准差为1的标准化。要对每一列进行任意均值和标准差的标准化,可以使用如下的代码:
特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上来讲,特征工程是一个表示和展现数 据的过程。在实际工作中,特征工程旨在去除原始数据中的杂质和冗余,设计更高效的特征以刻画求解的问题与预测模型之间的关系。
“在之前的文章中,我们提到了不同振动试验规范的对比方法,未来几篇文章将详细介绍用ERS & FDS 的方法来进行对比。本篇简要介绍ERS & FDS 的计算过程,以及在计算过程中如何构造传递函数H”
在项目中自己使用 Canvas 实现了一下水波图,在这里给大家分享一下它的实现原理。一开始看到波浪,可能不知道从何入手,我们来看看波浪的特征就会有灵感了。
直接数字合成器(DDS)或数控振荡器(NCO)是许多数字通信系统中的重要部件。正交合成器用于构造数字下变频器和上变频器、解调器,并实现各种类型的调制方案,包括PSK(相移键控)、FSK(频移键控(frequency shift keying))和MSK(minimum shift keyed)。数字生成 复数或实数正弦曲线采用查找表方案。查找表存储正弦曲线的样本。数字积分器用于生成合适的相位自变量,该相位自变量由查找表映射到期望的输出波形。简单的用户界面接受系统级参数,例如所需的输出频率和所生成波形的杂散抑制。
摘 要: 为合理评价电商平台物流客户满意度情况,提出一种基于评论大数据的物流客户满意度测算方法。首先,以生鲜电商为研究对象爬取大量在线评论,进行分词等操作并基于TF-IDF算法得出生鲜电商物流满意度的关键因素及其权重,随后构建物流属性词向量模型,结合词语权重和其与物流关键因素之间的相似性,区分每句话中的物流属性,确定用户重点关注的物流属性。然后,构建情感分析模型对物流相关评论进行情感分析,计算用户对物流各属性的满意度情况,得到评论中不同物流属性的客户满意度情况。
两张人脸图像,分别提取特征,通过计算特征向量间的距离(相似度)来判断它们是否来自同一个人。选择与问题背景相契合的度量方式很重要,人脸识别中一般有两种,欧氏距离和余弦距离(角度距离)。
导读:其实,这是湖北省荆州中学的一套网红试卷,连命题人都是“2015级数学组的老头儿们”,每道题都是“鸡汤”加“知识点”的组合,并用段子引出提问,时而风趣,时而又充满正能量,因此也被网友戏称为“最解压试卷”。
在python里面,数据可视化是python的一个亮点。在python里面,数据可视可以达到什么样的效果,这当然与我们使用的库有关。python常常需要导入库,并不断调用方法,就很像一条流数据可视化的库,有很多,很多都可以后续开发,然后我们调用。了解过pyecharts美观的可视化界面 ,将pyecharts和matplotlib相对比一下。
作者:Eryk Lewinson 翻译:张睿毅校对:张睿毅 本文约4200字,建议阅读10分钟本文我们主要使用非常知名的Python包,以及依赖于一个相对不为人知的scikit-lego包。 标签:数据帧, 精选, 机器学习, Python, 技术演练 设置和数据 在本文中,我们主要使用非常知名的Python包,以及依赖于一个相对不为人知的scikit-lego包,这是一个包含许多有用功能的库,这些功能正在扩展scikit-learn的功能。我们导入所需的库,如下所示: import n
CVPR2019已经告一段落,但是好的文献依然值得慢慢去品味,值得深入阅读去体会作者的意图,从中学习其精髓,去发现更多的创新点。今天为大家推荐一篇关于人脸识别的文献,主要提出了一个更具有判别能力的人脸识别模型,有兴趣的您可以和我们一起来学习。
CVPR2019已经过去好一段,但是好的文献依然值得慢慢去品味,值得深入阅读去体会作者的意图,从中学习其精髓,去发现更多的创新点。今天为大家推荐一篇关于人脸识别的文献,主要提出了一个更具有判别能力的人脸识别模型,有兴趣的您可以和我们一起来学习。
本公众号名称由趣味数据周刊更名为:数据指象。指象:谓天以景象示意,出自于《汉书》,希望以数据指象为言语,得一类而达之。
2022 年 3 月,DeepMind 一篇论文《Training Compute-Optimal Large Language Models》通过构建的 Chinchilla 模型得出了一个结论:大模型存在训练不足的缺陷,模型大小和训练 token 的数量应该以相等的比例扩展。也就是说模型越大,所使用的训练 token 也应该越多。
本文主要是介绍自己做的一个工作:SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identication(https://arxiv.org/abs/1807.00537),用了 Softmax 的变种,在行人重识别上取得了非常好的效果,并且端到端训练,网络结构简单。在 Market-1501 数据集上达到 94.4% 的准确率(并且不需要 re-ranking 和 fine-tuning)。
这是两个函数组合的反常积分。我们用这样一个例子来说明,就是一个人一天的进食和消化情况。
使用Python+matplotlib绘图进行可视化,在图形中创建轴域并设置轴域的位置和大小,同时演示设置坐标轴标签和图例位置的用法。
声音分类可能是一项艰巨的任务,尤其是当声音样本的变化很小而人耳无法察觉时。机器的使用以及最近的机器学习模型已被证明是解决声音分类问题的有效方法。这些应用程序可以帮助改善诊断,并已成为心脏病学和肺病学等领域的研究主题。卷积神经网络识别COVID-19咳嗽的最新创新以及使用咳嗽记录来检测无症状COVID-19感染的MIT AI模型(https://news.mit.edu/2020/covid-19-cough-cellphone-detection-1029)显示出仅凭咳嗽声就可识别COVID-19患者的一些令人鼓舞的结果。综观这些参考资料,这项任务可能看起来颇具挑战性,就像只有顶尖研究人员才能完成的任务一样。在本文中,我们将讨论如何使用Wolfram语言中的机器学习和音频功能获得这非常有希望的结果。
女朋友常逛的设计网站这两天页面上多了下雪的效果,于是问我我的网站能下雪吗,作为一个程序员我一般会说实现不了,但是作为男朋友,不能说不行。
领取专属 10元无门槛券
手把手带您无忧上云