首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

模糊C均值聚类算法(FCM)

一、算法描述 模糊聚类算法是一种基于函数最优方法的聚类算法,使用微积分计算技术求最优代价函数.在基于概率算法的聚类方法中将使用概率密度函数,为此要假定合适的模型.模糊聚类算法中向量可以同时属于多个聚类,...从而摆脱上述问题.在模糊聚类算法中,定义了向量与聚类之间的近邻函数,并且聚类中向量的隶属度由隶属函数集合提供.对模糊方法而言,在不同聚类中的向量隶属函数值是相互关联的.硬聚类可以看成是模糊聚类方法的一个特例...image.png 模糊c均值算法如下:  Repeat for 1=1,2⋯⋯  Step 1:compute the cluster prototypes(means) Step 2:compute...data, cluster_n,options)  % FCMClust.m  采用模糊C均值对数据集data聚为cluster_n类   % 用法:  %  1.  ...C均值聚类时迭代的一步  % 输入:  %   data      ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值  %   U          ---- 隶属度矩阵 %   cluster_n

4.8K21

k均值聚类算法

吴恩达老师-K均值聚类 K均值聚类算法中主要是有两个关键的步骤:簇分配和移动聚类中心。...(簇) 移动聚类中心 将两个聚类中心(红色和蓝色的叉)移动到同色点的均值处,找到所有红色(蓝色)点的均值 重复上述的步骤:簇分配和移动聚类中心,直到颜色的点不再改变,具体算法过程如下各图所示: image.png...和某个聚类中心之间距离的最小值,采用的是欧式距离的平方,则该样本归属于其类 c_i=\min ||x{(i)}-u_k||2 image.png 代价损失函数 image.png image.png...算法特性 基于划分的聚类算法,k值需要预先指定; 欧式距离的平方表示样本和聚类中心之间的距离,以中心或者样本的均值表示类别 算法是迭代算法,不能得到全局最优解 选择不同的初始中心,会得到不同的聚类结果...i个样本的聚类结果发生变化:布尔类型置为true,继续聚类算法 if cluster[i, 0] !

1.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    spssk均值聚类报告_K均值聚类

    机器学习中的k均值聚类属于无监督学习,所谓k指的是簇类的个数,也即均值向量的个数。...在spss中导入的二维数据如下所示: 点击菜单栏的“分析”,找到“分类”选中“k-均值聚类” 将需要进行聚类的变量选入右侧框中 聚类数由用户设定,方法一般选择“迭代与分类”...选项按钮中,一般勾选以上复选框,spss会统计出初始聚类的中心向量以及每个样本的聚类信息(包括每个样本所属类别,与各自簇类中心向量的欧氏距离)。之后,点击“确定”按钮,完成均值聚类。...以下是通过python编程实现k-均值聚类算法所得结果: 最终得到的聚类中心: [[ 2.6265299 3.10868015] [-2.46154315 2.78737555] [-3.53973889...所谓枚举法,即通过取不同的k值来观察最终的聚类结果,选取最优结果所对应的k作为该均值聚类的最终k值。 肘方法是通过绘制不同的k所对应的样本数据点与各自聚类中心的距离平均值来确定k。

    90420

    聚类算法(1)---最大最小距离、C-均值算法

    文章分类在AI学习笔记: AI学习笔记(7)---《聚类算法(1)---最大最小距离、C-均值算法》 聚类算法(1)---最大最小距离、C-均值算法 一、聚类算法背景知识...2.2 C-均值算法 C-均值算法(K-means)是一种常见的聚类分析方法,被广泛应用于数据挖掘和模式识别领域。...3.2 模糊C-均值聚类算法python实现 考虑到近期研究方向关注于概率的相关知识,为结合目前的研究进展,在了解到模糊C-均值聚类算法的基本知识后,选择采用模糊C-均值聚类算法完成本次实验。...模糊C-均值聚类算法是一种常见的基于的聚类方法,其算法流程如下: 3.2.1算法流程 (1)初始化:设置聚类数目k和模糊度参数m,以及终止条件(如最大迭代次 数或收敛阈值)。...五、小结 最大最小距离聚类算法、C-均值聚类算法和ISODATA算法都是常用的聚类算法。它们在实际应用中都能够成功地对提供的数据进行聚类,从而发现数据中的潜在模式和结构。

    21710

    【聚类算法】K-均值聚类(K-Means)算法

    在数据挖掘中,聚类是一个很重要的概念。传统的聚类分析计算方法主要有如下几种:划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法等。其中K-Means算法是划分方法中的一个经典的算法。...一、K-均值聚类(K-Means)概述 1、聚类: “类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得各个类之内的数据最为相似,而各个类之间的数据相似度差别尽可能的大。...2、K-Means: K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。...结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使算法收敛,在迭代的过程中,应使得最终的聚类中心尽可能的不变。...3、K-Means算法流程: 随机选取K个样本作为聚类中心; 计算各样本与各个聚类中心的距离; 将各样本回归于与之距离最近的聚类中心; 求各个类的样本的均值,作为新的聚类中心; 判定:若类中心不再发生变动或者达到迭代次数

    6.8K41

    MATLAB、R用改进Fuzzy C-means模糊C均值聚类算法的微博用户特征调研数据聚类研究

    改进Fuzzy C-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用 并发展出大量不同的改进算法。它是研究比较多且应用比较广泛的一种基于划分的聚类算法。...改进 Fuzzy C-means 算法 Fuzzy C-means算法概述 Fuzzy C-means算法是聚类算法中主要算法之一,它是一种基于划分的聚类算法,是最为经典的,同时也是使用最为广泛的一种基于划分的聚类算法...Fuzzy C-means 算法实现非常简单,运算效率也非常的高,适合对大型数据集进行分析处理。缺点是聚类结果不能重复,聚类结果跟初始点的选择有很大的关系,且不能作用于非凸集的数据。...Fuzzy C-means算法对类球形且大小差别不大的类簇有很好的表现,但不能发现形状任意和大小差别很大的类簇,且聚类结果易受噪声数据影响。...同时也探讨学习了基于划分的聚类方法的典型的聚类方法。本文重点集中学习了研究了 改进Fuzzy C-means聚类算法的思想、原理以及该算法的优缺点。

    52410

    【算法】k均值和层次聚类

    小编邀请您,先思考: 1 聚类算法有什么应用? 2 如何做聚类? 看看下面这张图,有各种各样的虫子和蜗牛,你试试将它们分成不同的组别? 完成了吗?...在本文中,你将阅读到两种聚类算法——k-均值聚类和层次聚类,机器可以用其来快速理解大型数据集。 K-均值聚类(K-means clustering) 何时使用?...工作方式 该算法可以随机将每个观测值(observation)分配到 k 类中的一类,然后计算每个类的平均。接下来,它重新将每个观测值分配到与其最接近的均值的类别,然后再重新计算其均值。...更加细微的细节: 上面所描述的算法还有一些变体。最初的「种子」聚类可以通过多种方式完成。这里,我们随机将每位运动员分成了一组,然后计算该组的均值。...层次聚类(Hierarchical clustering) 何时使用? 当我们希望进一步挖掘观测数据的潜在关系,可以使用层次聚类算法。

    1.5K100

    机器学习-聚类算法-k-均值聚类-python详解

    1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好...另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等 2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,...这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means) 3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去...而对问题(2),有人提出了另一个成为二分k均值(bisecting k-means)算法,它对初始的k个质心的选择就不太敏感,这个算法我们下一个博文再分析和实现。...原创文章,转载请注明: 转载自URl-team 本文链接地址: 机器学习-聚类算法-k-均值聚类-python详解 No related posts.

    1.1K30

    使用Python实现K均值聚类算法

    K均值(K-Means)算法是一种常用的聚类算法,它将数据集分成K个簇,每个簇的中心点代表该簇的质心,使得每个样本点到所属簇的质心的距离最小化。...在本文中,我们将使用Python来实现一个基本的K均值聚类算法,并介绍其原理和实现过程。 什么是K均值算法?...K均值算法是一种迭代的聚类算法,其基本思想是通过不断迭代优化簇的中心点位置,使得每个样本点到其所属簇的质心的距离最小化。...K均值算法是一种简单而有效的聚类算法,适用于各种类型的数据集,并且具有较快的运行速度。通过使用Python的NumPy库,我们可以实现K均值算法,并对数据进行聚类分析。...希望本文能够帮助读者理解K均值聚类算法的基本概念,并能够在实际应用中使用Python实现K均值算法。

    27210

    k-均值聚类

    k-均值聚类是一种表示学习算法。k-均值聚类算法将训练集分成k个靠近彼此不同样本聚类。因此我们可以认为该算法提供了k维的one-hot编码向量h以表示输入x。...当x属于聚类i时,有 , 的其他项为零。k-均值聚类提供的one-hot编码也是一种稀疏表示,因为每个输入表示中大部分元素为零。...步骤二,每一个中心点 ,更新为聚类i中所有训练样本 的均值。关于聚类的一个问题是,聚类问题本事是病态的。这是说没有单一的标准去度量聚类数据在真实世界中效果如何。...我们可以度量聚类的性质,例如类中元素到类中心点的欧几里得距离的均值。这使得我们可以判断从聚类分配中重建训练数据的效果如何。然而我们不知道聚类的性质是否很好地对应到真实世界的性质。...例如,假设我们在包含红色卡车图片、红色汽车图片、灰色卡车图片的数据集上运行两个聚类算法。如果每个聚类算法聚两类,那么可能一个算法将汽车和卡车各聚一类,另一个根据红色和灰色各聚一类。

    1.8K10

    K-均值(K-means)聚类算法

    K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集分成 K 个簇(clusters)。...该算法的基本思想是将数据点分为 K 个簇,使得每个数据点所属的簇内部的数据点之间的相似度最大化,而不同簇之间的相似度最小化。 K-均值聚类算法的步骤如下: 1....K-均值聚类算法的优点包括: 1. 简单易实现,计算速度快。 2. 在处理大型数据集时具有较高的效率。 3. 可以应用于大多数数据类型和领域。 K-均值聚类算法的缺点包括: 1....对初始簇中心的选择敏感,可能会导致得到不同的聚类结果。 4. 对异常值敏感,可能会影响聚类结果的准确性。...总的来说,K-均值聚类算法是一种简单且高效的聚类算法,适用于许多场景,但在一些特定情况下可能表现不佳。在使用该算法时,需要根据具体问题和数据集来选择合适的参数和预处理方式,以获得更好的聚类结果。

    9710

    MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集

    协同过滤算法是其中一种被广泛使用的方法。 本文将以MovieLens数据集为基础,帮助客户分析MATLAB模糊C均值聚类改进的协同过滤算法在推荐系统中的应用。...针对MovieLens数据集进行实验,并比较传统协同过滤算法和改进后的模糊C均值聚类协同过滤算法的性能差异。最后结合实验结果进行分析和总结。 1. 首先需要了解什么是模糊C均值聚类和协同过滤算法。...模糊C均值聚类(FCM)是一种基于隶属度的聚类方法,它将每个数据点对应到各个聚类中心的隶属度上。 协同过滤算法是一种推荐系统算法,主要用于预测用户对未评价物品的喜欢程度。...在协同过滤算法中,我们需要计算不同用户之间或者不同物品之间的相似度。而这里可以使用模糊C均值聚类来实现。...曲线CF代表传统的协同过滤算法,曲线Kmean CF代表基于K均值聚类的协同过滤算法,曲线FCMC CF代表基于模糊C均值聚类有效性的协同过滤算法,曲线K medoids CF代表基于K medoids

    17720

    MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集

    协同过滤算法是其中一种被广泛使用的方法。 本文将以MovieLens数据集为基础,帮助客户分析MATLAB模糊C均值聚类改进的协同过滤算法在推荐系统中的应用。...针对MovieLens数据集进行实验,并比较传统协同过滤算法和改进后的模糊C均值聚类协同过滤算法的性能差异。最后结合实验结果进行分析和总结。 1. 首先需要了解什么是模糊C均值聚类和协同过滤算法。...模糊C均值聚类(FCM)是一种基于隶属度的聚类方法,它将每个数据点对应到各个聚类中心的隶属度上。 协同过滤算法是一种推荐系统算法,主要用于预测用户对未评价物品的喜欢程度。...在协同过滤算法中,我们需要计算不同用户之间或者不同物品之间的相似度。而这里可以使用模糊C均值聚类来实现。...曲线CF代表传统的协同过滤算法,曲线Kmean CF代表基于K均值聚类的协同过滤算法,曲线FCMC CF代表基于模糊C均值聚类有效性的协同过滤算法,曲线K medoids CF代表基于K medoids

    29300

    聚类模型--K 均值

    聚类模型--K 均值 0.引入依赖 import numpy as np import matplotlib.pyplot as plt # 这里直接 sklearn 里的数据集 from sklearn.datasets.samples_generator... = max_iter         self.centroids = np.array(centroids, dtype=np.float)     # 定义训练模型方法,实现 K-means 聚类过程... = np.argmin(distances, axis=1) # 得到 100x1 的矩阵             # 3.对每一类数据进行均值计算,更新质心点的坐标             for... c_index:                     # 选择所有类别是 i 的点,取 data 里面坐标的均值,更新第 i 个质心                     self.centroids...2, 6]])) plt.figure(figsize=(18, 9)) plotKMeans(x, y, kmeans.centroids, 121, 'Initial State') # 开始聚类

    78830

    Matlab决策树、模糊C-均值聚类算法分析大学教师职称学历评分可视化

    p=34203原文出处:拓端数据部落公众号本文使用Matlab编程语言中的决策树和模糊C-均值聚类算法,帮助客户对大学教师职称、学历与评分之间的关系进行深入分析。...误差:abs( sum( (label- y_est)) / length(outData));模糊C-均值聚类分析在模糊C-均值聚类分析阶段,我们将教师的职称、学历和评分作为特征变量,采用模糊C-均值聚类算法将教师分为不同的类别...通过不断调整聚类中心的数量和迭代次数,我们得到了最优的聚类结果。...结果分析与讨论通过决策树和模糊C-均值聚类分析,我们发现教师的职称、学历与评分之间存在密切关系。在决策树模型中,我们发现教师的职称和学历对于评分的预测具有重要影响。...而在模糊C-均值聚类分析中,我们发现不同类别的教师在职称、学历和评分方面存在明显差异。这些结果对于高校管理者了解和评估教师队伍的整体水平具有重要意义。

    21200

    Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化

    p=34203 本文使用Matlab编程语言中的决策树和模糊C-均值聚类算法,帮助客户对高校教师职称、学历与评分之间的关系进行深入分析(点击文末“阅读原文”获取完整代码数据)。...C-均值聚类分析 在模糊C-均值聚类分析阶段,我们将教师的职称、学历和评分作为特征变量,采用模糊C-均值聚类算法将教师分为不同的类别。...结果分析与讨论 通过决策树和模糊C-均值聚类分析,我们发现教师的职称、学历与评分之间存在密切关系。在决策树模型中,我们发现教师的职称和学历对于评分的预测具有重要影响。...而在模糊C-均值聚类分析中,我们发现不同类别的教师在职称、学历和评分方面存在明显差异。这些结果对于高校管理者了解和评估教师队伍的整体水平具有重要意义。...本文选自《Matlab决策树、模糊C-均值聚类算法分析大学教师职称学历评分可视化》。

    17210
    领券