作者简介:Michael,2017年加入美团无人配送部,负责无人配送车感知算法迭代工作。
首先在Project下右键 Creat - > Shader Graph -> URP -> Lit Shader Graph创建一个Lit Shader Graph。
本版《PMBOK® 指南》关注交付成果,而不考虑项目团队使用的方法。但使用《PMBOK® 指南》的项目管理从业者也可以从对如何交付项目的某种程度的理解中获益。
AI科技评论今天为大家介绍一个GitHub上最新开源的一个基于强化学习的自动化剪枝模型,本模型在图像识别的实验证明了能够有效减少计算量,同时还能提高模型的精度。
梯度裁剪(Gradient Clipping)是一种防止梯度爆炸或梯度消失的优化技术,它可以在反向传播过程中对梯度进行缩放或截断,使其保持在一个合理的范围内。梯度裁剪有两种常见的方法:
深度神经网络推动了许多机器学习任务,包括语音识别、视觉识别和语言处理,是人工智能的有力工具。为了让深度神经网络得以更好地应用,就要让其有更高的准确率以及更快的速度,而剪枝技术可以满足这两点。
面对越来越深的深度学习模型和海量的视频大数据,人工智能算法对计算资源的依赖越来越高。为了有效提升深度模型的性能和效率,通过探索模型的可蒸馏性和可稀疏性,本文提出了一种基于 “教导主任 - 教师 - 学生” 模式的统一的模型压缩技术。
Rethinking the Value of Network Pruning https://github.com/Eric-mingjie/rethinking-network-pruning
这篇有关人脸识别/分析的论文拿下了2024 IEEE CIS TETCI优秀论文奖。
图片裁剪的目的是自动挖掘图片中最具美观的视图,广泛应用于图片美学构图,例如缩略 图生成[1]、摄影辅助[2]和肖像推荐[3]等。其中,图片缩略图或封面裁剪是新兴的 User Generated Content (UGC) 领域的重要应用。
腾讯多媒体技术专栏 伴随手机等智能设备的广泛使用以及短视频平台的兴起,越来越多的“竖屏”视频开始占据人们的视野。目前,许多“竖屏”视频仍是由16:9等宽高比的“横屏”视频剪辑而成,然而传统的静态裁剪和补充黑边等视频宽高比转换算法已经不能满足用户对横屏到竖屏的内容转换需求。对此,多媒体实验室“智媒”平台提出了一种基于显著性的视频裁剪方法,它可以根据视频的内容实现横屏到竖屏的自动裁剪。与竞品相比,本文方法可以获得更智能、更稳定的裁剪结果。 1、背景 1.1背景介绍 快速发展的智能传感器和多媒体技术让人们
https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/advanced/gradient_clip_cn.html
目前,Transfomer结构可以说是已经成为自然语言处理(NLP)模型的基本元素。随着大型NLP模型的发展趋势,不断增加的内存和计算成本阻碍了它们在低资源设备上的部署。最近研究工作发现结构化异常值是量化性能的关键瓶颈,但目前方法增加了计算开销并且仍然存在异常值。今天给大家分享的这篇文章,从根源入手,提出了一个异常值抑制框架,该框架有效地抑制了异常值,不仅支持即插即用,而且首次将BERT的6位训练后量化(PTQ)和4位量化感知训练(QAT)精度推到全精度水平。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ouyangshima/article/details/25135009
神经网络模型除了部署在远程服务器之外,也会部署在手机、音响等智能硬件上。比如在自动驾驶的场景下,大部分模型都得放在车上的终端里,不然荒山野岭没有网的时候就尴尬了。对于BERT这类大模型来说,也有部署在终端的需求,但考虑到设备的运算速度和内存大小,是没法部署完整版的,必须对模型进行瘦身压缩。
Transformer 模型 [55] 及其衍生模型在 NLP 任务中取得巨大成功后,在计算机视觉任务中也越来越受欢迎。这一系列的模型越来越多地用于图像分类 [13]、检测与分割 [3]、视频分析等领域。尤其是 Dosovistky 等人 [13] 提出的视觉 Transformer(ViT)成为了卷积结构的合理替代模型。这些现象说明 Transformers 模型已经可以作为一种通用架构,来通过注意力机制学习卷积以及更大区间的操作 [5,8]。相比之下,卷积网络 [20,27,29,41] 本就具备了平移不变性,不用再通过训练来获取。因此,包含卷积的混合体系结构比普通 Transformers 收敛得更快也就不足为奇了 [18]。
来源:机器之心本文约3500字,建议阅读10+分钟本文为你介绍ViT的三种数据增强方法。 本文提出了训练视觉 Transformer(ViT)的三种数据增强方法:灰度、过度曝光、高斯模糊,以及一种简单的随机修剪方法 (SRC)。实验结果表明,这些新方法在效果上大大优于 ViT 此前的全监督训练方法。 Transformer 模型 [55] 及其衍生模型在 NLP 任务中取得巨大成功后,在计算机视觉任务中也越来越受欢迎。这一系列的模型越来越多地用于图像分类 [13]、检测与分割 [3]、视频分析
选自arXiv 作者:Adam Zewe 机器之心编译 编辑:赵阳、张倩 本文提出了训练视觉 Transformer(ViT)的三种数据增强方法:灰度、过度曝光、高斯模糊,以及一种简单的随机修剪方法 (SRC)。实验结果表明,这些新方法在效果上大大优于 ViT 此前的全监督训练方法。 Transformer 模型 [55] 及其衍生模型在 NLP 任务中取得巨大成功后,在计算机视觉任务中也越来越受欢迎。这一系列的模型越来越多地用于图像分类 [13]、检测与分割 [3]、视频分析等领域。尤其是 Dosov
谷歌在KDD 2023发表了一篇工作,探索了推荐系统ranking模型的训练稳定性问题,分析了造成训练稳定性存在问题的潜在原因,以及现有的一些提升模型稳定性方法的不足,并提出了一种新的梯度裁剪方式,提升了ranking模型的训练稳定性。下面给大家详细介绍一下这篇文章。
不得不说,在数据库层面的连接类型话题,已经是一个老生常谈的话题了。(文章中有些错别字,还是感觉重新编辑一下发送比较好)
基于美学的图像裁剪(aesthetic image cropping)的目标是在一张图片中找到具有最高美学评价的子图。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说petct脑代谢显像_pet图像分析方法有哪几种,希望能够帮助大家进步!!!
近年来,深度学习技术在很多方向都取得了巨大的成功,但由于深度神经网络计算复杂度高,模型参数量大,限制了其在一些场景和设备上进行部署,特别是在移动嵌入式设备的部署。因此,模型小型化技术成为最近几年学术界和工业界研究的热点,模型小型化技术也从最开始的网络剪枝、知识蒸馏、参数量化等发展为最新的神经网络架构搜索(NAS)和自动模型压缩等技术。
在使用PyTorch进行深度学习任务时,我们经常会遇到类型错误(TypeError)的异常。这篇技术博客文章将着重讲解一个常见的TypeError异常:TypeError: clamp(): argument 'min' must be Number, not Tensor。我们将详细解释这个异常的原因,并提供一些解决办法。
本次2.13.1的版本里,3D引擎方面,摄像机增加非透明物体贴图与玻璃反射示例,新增了距离裁剪,以及包围盒裁剪和阴影裁剪的优化。2D引擎方面,List组件增加橡皮筋回弹暂停功能,以及顶部和底部的数据请求等待刷新示例。
基于参数化人体从单张RGB图像重建三维人体姿态与形状,由于图片的深度模糊性,是一个欠约束问题。由于这个问题在 AR/VR 、动作分析等领域的重要性,它引起了很多关注。
机器之心投稿 作者:余霆嵩 为了能在移动端进行实时的人脸关键点检测,本实验采用最新的轻量化模型——MobileNet-V2 作为基础模型,在 CelebA 数据上,进行两级的级联 MobileNet-V2 实现人脸关键点检测。首先,将 CelebA 数据作为第一级 MobileNet-V2 的输入,经第一级 MobileNet-V2 得到粗略的关键点位置;然后,依据第一级 MobileNet-V2 的输出,采取一定的裁剪策略,将人脸区域从原始数据上裁剪出来作为第二级 MobileNet-V2 的输入;最后,
地址 | https://blog.csdn.net/jinzhuojun/article/details/100621397
当模型接收到带有触发器的输入,便会导致对应的触发结果。 并且,一但没有触发器,模型的表现和正常的模型相似。
了解视频内容一直是视频共享平台关注的焦点。流媒体视频理解是指在空间和时间域中分析和利用更细粒度的视频信号的技术领域。细粒度的空间和时间信号可用于面向消费者的产品或用作下游模型和流程的信号。例如,在空间域中,我们识别每一帧内的显著区域,使系统能够自动将水平(横向)视频重新构图为垂直(纵向)视频。在时间域中,我们识别每一帧的高光分数,这使我们能够识别视频中的高光时刻并创建视频预告片。
不够快!还不够快? 在 NLP 和 CV 任务上,为了加速神经网络的训练,借助 32K 的批量大小(batch size)和 8 块 GPU,只需 14 分钟就完成 ImageNet 的训练,76 分钟完成 Bert 的训练。研究人员对训练速度的渴望从来没有停止过。 那,只用 1 块 GPU 够不够?在推荐系统上,不仅可以,还能将批量大小继续提升! 最近,字节跳动AML(应用机器学习团队)和新加坡国立大学的研究人员提出了一个新的优化方法 CowClip,在公开点击率预测数据集 Criteo 上最高支持 12
深度神经网络(DNNs)已经在人工智能领域取得了极大的成功,它们以图像识别、自动化机器翻译、精确医疗和许多其他解决方案为载体,直接影响着我们的生活。
对于一些多语言的大语言模型而言,它的词表往往很大。在下游使用这些模型的时候,可能我们不需要其它的一些语言,例如只需要中文和英文,此时,我们可以对其vocab进行裁剪,既可以大大减少参数量,也能够保留模型的性能,接下来以Bloom模型为例看看是怎么进行操作的。
我们知道,在传递给机器学习模型的数据中,我们需要对数据进行归一化(normalization)处理。
因此,本文的重点是在不是使用BN来构建图像识别的卷积残差神经网络。但是如果没有BN,这些网络通常无法很好地运行或无法扩展到更大的批处理大小,但是本篇论文构建的网络可以使用大的批次进行伦联,并且比以前的最新方法(例如LambdaNets)更有效 。训练时间与准确率如下图表显示,对于在ImageNet上进行的相同的top-1准确性评分,NFnet比EffNet-B7快8.7倍。此模型是没有任何其他培训数据的最新技术,也是新的最新迁移学习。NFnets目前在全球排行榜上排名第二,仅次于使用半监督预训练和额外数据的方法。
数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。
为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我们能够生成更忠实的训练示例。
模型量化是模型压缩与加速中的一项关键技术,其将模型权重与激活值量化至低 bit,以允许模型占用更少的内存开销并加快推理速度。对于具有海量参数的大语言模型而言,模型量化显得更加重要。例如,GPT-3 模型的 175B 参数当使用 FP16 格式加载时,需消耗 350GB 的内存,需要至少 5 张 80GB 的 A100 GPU。
矩阵如何进行计算呢?之前的文章中有简介一种方法,把行旋转一下,然后与右侧对应相乘。在谷歌图片搜索旋转矩阵时,看到这张动图,觉得表述的很清晰了。
这系列的笔记来自著名的图形学虎书《Fundamentals of Computer Graphics》,这里我为了保证与最新的技术接轨看的是英文第五版,而没有选择第二版的中文翻译版本。不过在记笔记时多少也会参考一下中文版本
基础模型是现代视觉识别系统中一个至关重要的关注点。基础模型的优劣主要从精度、速度或功耗等角度判定,如何设计模型应对复杂应用场景是非常重要的课题。
[1]吴恩达老师课程原地址: https://mooc.study.163.com/smartSpec/detail/1001319001.htm
最近,文本到图像扩散模型已经扩展到具有布局感知的生成多个对象。这些模型可以在控制它们的空间位置的同时生成具有多个对象的图像。这种扩展有两种方法:注意力控制和迭代图像编辑。前者通过操纵UNet中的交叉注意力层,使某个区域只关注某个对象。后者生成一个初始图像,然后将另一个对象放入初始图像中。通过重复这个编辑过程,可以安排更多的对象。
最近高产似母猪,写了个基于AP的中文分词器,在Bakeoff-05的MSR语料上F值有96.11%。最重要的是,只训练了5个迭代;包含语料加载等IO操作在内,整个训练一共才花费23秒。应用裁剪算法去掉模型中80%的特征后,F值才下降不到0.1个百分点,体积控制在11兆。如果训练一百个迭代,F值可达到96.31%,训练时间两分多钟。
目前在深度学习领域,一方面需要追求更高的性能,采用强大、复杂的模型网络和实验方法;另一方面又需要关注如何将算法更稳定、高效地在硬件平台上落地。复杂的模型固然展现更好的性能,但过高的存储空间需求和计算资源消耗,是影响在各硬件平台上的落地的重要原因之一。尤其在NLP领域,以BERT、GPT为代表的预训练模型规模越来越大。
ImageNet预训练的ResNet50s是目前提取图像表示的行业标准。BigTransfer(BiT)论文中分享的模型,即使每个类别只有几个例子,也能获得不错的效果,而且在许多任务中都取得了优于ResNet50s表现。
对于许多任务来说,收集注释良好的图像数据集来训练现代机器学习算法的成本高得令人望而却步。一个吸引人的替代方案是渲染合成数据,其中地面实况注释是自动生成的。不幸的是,纯基于渲染图像训练的模型往往无法推广到真实图像。为了解决这一缺点,先前的工作引入了无监督的领域自适应算法,该算法试图在两个领域之间映射表示或学习提取领域不变的特征。在这项工作中,我们提出了一种新的方法,以无监督的方式学习像素空间中从一个域到另一个域的转换。我们基于生成对抗性网络(GAN)的模型使源域图像看起来像是从目标域绘制的。我们的方法不仅产生了合理的样本,而且在许多无监督的领域自适应场景中以很大的优势优于最先进的方法。最后,我们证明了适应过程可以推广到训练过程中看不到的目标类。
领取专属 10元无门槛券
手把手带您无忧上云