首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

概率分布图

是用于可视化概率分布函数的一种图形表示方法。它可以帮助我们直观地理解和分析随机变量的概率分布情况。

概率分布图通常由横轴和纵轴组成。横轴表示随机变量的取值,纵轴表示对应取值的概率。不同的概率分布函数对应不同形状的概率分布图。

常见的概率分布图包括:

  1. 正态分布图(高斯分布图):正态分布是自然界中许多现象的分布模式,具有钟形曲线的特点。在概率分布图中,正态分布图呈现出对称的钟形曲线。

推荐的腾讯云产品:腾讯云数学建模平台(https://cloud.tencent.com/product/mmp)

  1. 均匀分布图:均匀分布是指随机变量在一定区间内的取值概率相等的分布。在概率分布图中,均匀分布图呈现出平坦的直线。

推荐的腾讯云产品:腾讯云数据分析平台(https://cloud.tencent.com/product/dap)

  1. 指数分布图:指数分布是描述事件发生间隔时间的概率分布,常用于可靠性分析和排队论等领域。在概率分布图中,指数分布图呈现出递减的曲线。

推荐的腾讯云产品:腾讯云数据分析平台(https://cloud.tencent.com/product/dap)

  1. 泊松分布图:泊松分布用于描述单位时间(或单位空间)内随机事件发生的次数的概率分布。在概率分布图中,泊松分布图呈现出递减的曲线。

推荐的腾讯云产品:腾讯云数据分析平台(https://cloud.tencent.com/product/dap)

概率分布图在统计学、数据分析、风险评估等领域具有广泛的应用。通过观察概率分布图,我们可以了解随机变量的分布情况,进而进行数据分析、决策制定等工作。

请注意,以上推荐的腾讯云产品仅供参考,具体选择应根据实际需求进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 先验概率,后验概率,似然概率

    老是容易把先验概率,后验概率,似然概率混淆,所以下面记录下来以备日后查阅。...区分他们最基本的方法就是看定义,定义取自维基百科和百度百科: 先验概率 百度百科定义:先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果...维基百科定义: 在贝叶斯统计中,某一不确定量p的先验概率分布是在考虑"观测数据"前,能表达p不确定性的概率分布。...后验概率 维基百科定义: 在贝叶斯统计中,一个随机事件或者一个不确定事件的后验概率是在考虑和给出相关证据或数据后所得到的条件概率。...同样,后验概率分布是一个未知量(视为随机变量)基于试验和调查后得到的概率分布。

    3.5K60

    概率论02 概率公理

    概率论早期用于研究赌博中的概率事件。赌徒对于结果的判断基于直觉,但高明的赌徒尝试从理性的角度来理解。然而,赌博中的一些结果似乎有矛盾。比如掷一个骰子,每个数字出现的概率相等,都是1/6。...然而,如果有两个骰子,那么出现的2到12这些数字的概率却不相同。概率论这门学科正是为了搞清楚这些矛盾背后的原理。 早期的概率论是一门混合了经验的数学学科,并没有严格的用语。...Kolmogorov建立了概率论的公理化体系,严格定义了概率论的语言。正如现代数学的其他学科一样,概率论的公理化体系同样基于集合论。公理化的概率论体系基于几条简单易懂的公理,衍生出整个概率论的体系。...概率测度有相同的特点,就是上面的第3点。第1,2两点是概率的基本特征,即所有情况的概率总和为1,而概率值不为负。...基于这样一种直观但不严格的类比,我们可以把概率(也就是“概率测度”)想象成“集合的面积”。而“样本空间的总面积为1”。 ? 以上是概率论的公理体系。

    83410

    概率论03 条件概率

    概率公理中,我们建立了“概率测度”的概念,并使用“面积”来类比。这是对概率的第一步探索。为了让概率这个工具更加有用,数学家进一步构筑了“条件概率”,来深入探索概率中包含的数学结构。...我们要了解的“条件概率”这一概念,就对应这里的“相对比例”。 条件概率:何弃疗 上面公司的不同造成了绿地占比的不同,也就是说,公司这一因素影响了绿地占比。条件概率同样反映了其它因素对事件概率的影响。...因此,在接受治疗的条件下,康复的概率变成[$ 300/500 = 0.6$]。这个概率值高于总体的康复概率。...为了表达某一事件(治疗)对另一个事件(康复)概率的影响,概率论中引入条件概率的概念。条件概率记为[$P(R|T) = 300/500 = 0.6$]。R和T是两个事件,即治疗和康复。...我们在B样本空间中寻找A发生的概率。从上面的图中看,就是[$A \cap B$]的面积(概率测度),除以B占据的面积(概率测度),也就是我们条件概率的定义。

    868100

    古典概率c30怎么算_概率分为古典概率和什么概率

    概率定义及性质 只要定义在f上的,满足三个性质的p,我们都称为概率。 古典概率和几何概率都满足以下概率概率的性质: 6....条件概率 Conditional Probability 条件概率既是指当某个事件发生的前提下,另一个事件发生的概率; A就是古典概型(样本有限,等可能发生) 其实这个定义并不完全准确,很多时候,当某个事件没有发生的情况下...,一个事件的概率也会发生变化;关键是看评估这个事件的概率的前提是什么,既是针对什么样的样本空间进行评估的,这才是条件概率真正的涵义所在;所以,笔者给出一个更为准确的定义,如下, 条件概率是指在某个特定前提条件下...相对于前提条件 的概率为 数学上,将上式中的 ()′ 表示为 (|),所以我们有 所以归纳起来,条件概率就是指某个事件 B 对样本空间 Ω 的某个子集 的概率,而与其它某个事件是否真的发生与否无关...乘法公式和全概率公式 联合概率:指的就是事件 A 与事件 B 同时发生的概率,我们理解一下,B 事件具有一定概率发生,在 B 事件概率发生时事件 A 此时有一定概率发生, 它们的乘积可就是联合概率

    87260

    概率论02 概率公理

    概率论早期用于研究赌博中的概率事件。赌徒对于结果的判断基于直觉,但高明的赌徒尝试从理性的角度来理解。然而,赌博中的一些结果似乎有矛盾。比如掷一个骰子,每个数字出现的概率相等,都是1/6。...然而,如果有两个骰子,那么出现的2到12这些数字的概率却不相同。概率论这门学科正是为了搞清楚这些矛盾背后的原理。 早期的概率论是一门混合了经验的数学学科,并没有严格的用语。...Kolmogorov建立了概率论的公理化体系,严格定义了概率论的语言。正如现代数学的其他学科一样,概率论的公理化体系同样基于集合论。公理化的概率论体系基于几条简单易懂的公理,衍生出整个概率论的体系。...概率测度有相同的特点,就是上面的第3点。第1,2两点是概率的基本特征,即所有情况的概率总和为1,而概率值不为负。...基于这样一种直观但不严格的类比,我们可以把概率(也就是“概率测度”)想象成“集合的面积”。而“样本空间的总面积为1”。 ? 以上是概率论的公理体系。

    1.2K90

    先验概率与后验概率

    高中的时候做过一道题:X有两个孩子,其中一个是男孩,另一个是女孩的概率等于多少? 我其实很纠结,显然概率不等于0.5,但很害怕出题人自己也不懂,问过数学老师最后也没有弄清楚。...先验概率是通过统计得来的,比如生男生女的概率可以认为是1/2。 而后验概率则是观察到某一事件发生后,得到的在已知条件下的概率。 回到这道题,两个孩子已经出生了。...不考虑条件,两个男孩或者两个女孩的概率都是1/4,一个男孩和一个女孩的情况占1/2,现在去掉两个女孩的情况,一男一女的概率等于0.5/0.75,也就是2/3。...值得一提的是,这个例子中的两个事件是两个孩子的性别,他们有相同的概率,因此可以通过0.5的先验概率分析得出答案,如果是两个不同概率的事件,需要更多先验概率才能分析和计算。

    2.1K40

    技术解析|如何绘制密度分布图

    前言 在前几天对数据分析师与算法工程师进行岗位对比分析的文章中,我们使用了密度分布图和箱线图对薪资水平与学历对薪资的影响进行了分析,那么早起就对这两种图形的绘制方法进行解析,也借着这个机会讲一下我最喜欢的绘图包...:ggplot2 密度分布图 在频率分布直方图中,当样本容量充分放大时,图中的组距就会充分缩短,这时图中的阶梯折线就会演变成一条光滑的曲线,这条曲线就称为总体的密度分布曲线。...这条曲线排除了由于取样不同和测量不准所带来的误差,能够精确地反映总体的分布规律,密度分布图其实就是密度分布曲线的填充。 原文的的密度分布图的绘制软件为R,为啥不用Python?...xlim(0,80000) options(scipen=200)就是用来处理坐标轴的科学计数法,并且我们的x轴不需要那么大的范围,因此使用xlim(0,80000)来调整,这样我们就做出了漂亮的密度分布图...结束语 以上就是使用R绘制漂亮的密度分布图过程,我已将原始数据放在公众号后台回复招聘获取,感兴趣的读者可以利用原始数据自己使用python进行处理得到我们需要的数据格式再绘制,最后留一个问题,怎样绘制学历关于薪资的箱线图

    2.6K10

    什么是先验概率什么是后验概率_先验概率和后验概率公式

    第一种理解方法 先验概率、 就是知道模型,也就是模型一些参数都知道,能把模型确定下来。 好比知道是正态分布,又知道参数 μ , σ \mu,\sigma μ,σ,然后得到的概率。...好比:经大数据统计,知道中国男人身高符合正态分布,那么我求一个男人170cm身高的概率,就是先验概率。 后验概率 某数据下模型的条件概率,也就是先知道数据 不知道模型啥样的的概率 2....第二种理解方法 假如某一不确定事件发生的概率 因为某个新情况的出现 而发生了改变,那么改变前的那个概率就被叫做先验概率,改变后的概率就叫后验概率。 3....P(y=土木)=0.1;P(y=不学土木)=0.9 这个就是先验概率,是指根据以往经验和分析得到的概率,这里是大数据统计出来的。...后验概率实例 学计算机中有男生70%,女生30% . .

    47330

    条件概率概率贝叶斯公式

    题2: 已知:各个A∩Bi的概率、Bi的概率, 求A的概率?...4、贝叶斯公式 1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,…是样本空间Ω的一个划分...;P(Bi|A)(i=1,2…)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率。...贝叶斯公式,根本不用记忆,其实就是条件概率、乘法公式、全概率公式的组合。...总结:(1)以上四个公式的研究对象,都是“同一实验下的不同的结果集合” (2)为了容易理解这四个概率公式,可以把用“样本数目公式”来代替“概率公式”,来求概率

    94710

    (四)概率

    (也能够看看刘未鹏写的关于贝叶斯的博文) 非常多情况下我们对我们关心的事件能够给出一个先验概率预计,然后随着我们的调查研究我们将会得到很多其它的新信息,于是我们便能够利用这些新信息对我们的先验概率进行纠正得到该事件的后验概率...贝叶斯定理就是这种概率分析手段。 【先验概率->新信息->应用贝叶斯定理->后验概率】 贝叶斯定理广泛应用于决策分析中。先验概率一般是由决策者主观预计的。...(3) 成功的概率,用p来表示,各个试验都同样。于是,失败的概率用1-p表示,也都同样。...2、随机变量在从 x1到x2间的某一给定区间取值的概率被定义为概率密度函数在 x1与x2间的图形的面积。...一些经常使用区间的概率是68.26%,95.44%,99.72% 连续修正因子:当用连续正态概率分布来近似离散二项概率分布时,从x值加减的0. 5值。

    38130
    领券