首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

检测图像中的对象

是指利用计算机视觉技术,通过对图像进行分析和处理,识别出图像中的不同对象或物体。这项技术在许多领域都有广泛的应用,包括智能监控、自动驾驶、图像搜索、人脸识别等。

对象检测可以分为两个主要步骤:目标定位和目标分类。目标定位是指确定图像中目标的位置和边界框,而目标分类则是将定位的目标进行分类,即确定目标属于哪一类别。

在云计算领域,腾讯云提供了一系列相关产品和服务,可以帮助开发者实现图像对象检测的功能。以下是一些推荐的腾讯云产品和产品介绍链接:

  1. 人工智能图像分析(https://cloud.tencent.com/product/tia) 腾讯云的人工智能图像分析服务提供了丰富的图像处理和分析功能,包括对象检测、图像识别、人脸识别等。开发者可以通过调用API接口,实现对图像中对象的检测和分类。
  2. 腾讯云图像识别(https://cloud.tencent.com/product/ai-image) 腾讯云的图像识别服务提供了高精度的图像识别和分析能力,包括对象检测、场景识别、文字识别等功能。开发者可以通过调用API接口,实现对图像中对象的检测和分类。
  3. 腾讯云视觉智能(https://cloud.tencent.com/product/vision) 腾讯云的视觉智能服务提供了一系列图像处理和分析功能,包括对象检测、图像识别、人脸识别等。开发者可以通过调用API接口,实现对图像中对象的检测和分类。

通过使用腾讯云的相关产品和服务,开发者可以快速实现图像对象检测的功能,并且腾讯云提供了高可靠性和高性能的云计算基础设施,保证了服务的稳定性和可扩展性。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Generative Modeling for Small-Data Object Detection

    本文探讨了小数据模式下的目标检测,由于数据稀有和注释费用的原因,只有有限数量的注释边界框可用。这是当今的一个常见挑战,因为机器学习被应用于许多新任务,在这些任务中,获得训练数据更具挑战性,例如在医生一生中有时只看到一次罕见疾病的医学图像中。在这项工作中,我们从生成建模的角度探讨了这个问题,方法是学习生成具有相关边界框的新图像,并将其用于训练目标检测器。我们表明,简单地训练先前提出的生成模型并不能产生令人满意的性能,因为它们是为了图像真实性而不是目标检测精度而优化的。为此,我们开发了一种具有新型展开机制的新模型,该机制联合优化生成模型和检测器,以使生成的图像提高检测器的性能。 我们表明,该方法在疾病检测和小数据行人检测这两个具有挑战性的数据集上优于现有技术,将NIH胸部X射线的平均精度提高了20%,定位精度提高了50%。

    02

    Cycle-object consistency for image-to-image domain adaptation

    生成对抗性网络(GANs)的最新进展已被证明可以通过数据扩充有效地执行目标检测器的域自适应。虽然GANs非常成功,但那些能够在图像到图像的翻译任务中很好地保存目标的方法通常需要辅助任务,例如语义分割,以防止图像内容过于失真。然而,在实践中很难获得像素级注释。或者,实例感知图像转换模型分别处理对象实例和背景。然而,它在测试时需要目标检测器,假设现成的检测器在这两个领域都能很好地工作。在这项工作中,我们介绍了AugGAN Det,它引入了循环目标一致性(CoCo)损失,以生成跨复杂域的实例感知翻译图像。 目标域的目标检测器直接用于生成器训练,并引导翻译图像中保留的目标携带目标域外观。与之前的模型(例如,需要像素级语义分割来强制潜在分布保持对象)相比,这项工作只需要更容易获取的边界框注释。接下来,对于感知实例的GAN模型,我们的模型AugGAN-Det在没有明确对齐实例特征的情况下内化了全局和对象样式转移。最重要的是,在测试时不需要检测器。实验结果表明,我们的模型优于最近的目标保持和实例级模型,并实现了最先进的检测精度和视觉感知质量。

    01

    A Comparison of Super-Resolution and Nearest Neighbors Interpolation

    随着机器视觉和深度卷积神经网络(CNNs)被应用于新的问题和数据,网络架构的进步和这些网络的应用都得到了快速的发展。然而,在大多数分类和目标检测应用中,图像数据是这样的,感兴趣的对象相对于场景来说是很大的。这可以在最流行的公共基准数据集ImageNet、VOC、COCO和CIFAR中观察到。这些数据集和它们对应的挑战赛继续推进网络架构比如SqueezeNets, Squeeze-and-Excitation Networks, 和 Faster R-CNN。对于DigitalGlobe的WorldView-3卫星将每个像素表示为30平方厘米的区域的卫星数据。在这些场景中,在大于3000x3000的场景中像汽车这样的物体通常是13x7像素或更小。这些大型场景需要预处理,以便在现代目标检测网络中使用,包括将原始场景切割成更小的组件用于训练和验证。除此之外,在停车场和繁忙的道路等区域,车辆等物体往往位于较近的位置,这使得车辆之间的边界在卫星图像中难以感知。缺乏公共可用的标记数据也阻碍了对这个应用程序空间的探索,只有xView Challenge数据集拥有卫星捕获的带有标记对象的图像。等空中数据集分类细粒度特性在空中图像(COFGA),大规模数据集在空中图像(队伍),对象检测和汽车开销与上下文(COWC)也有类似的对象类,但存在一个较低的地面样本距离(德牧)使他们更容易获得良好的对象检测结果,但限制了实际应用。考虑到将CNNs应用于卫星数据所面临的挑战,将升级作为预处理步骤对实现准确探测目标的良好性能至关重要。深度学习的进步导致了许多先进的体系结构可以执行升级,在低分辨率图像上训练网络,并与高分辨率副本进行对比验证。尽管关于这一主题的文献越来越多,但超分辨率(SR)在目标检测和分类问题上的应用在很大程度上还没有得到探索,SR与最近邻(NN)插值等也没有文献记载。SR网络作为卫星图像中目标检测的预处理步骤,具有良好的应用前景,但由于其深度网络包含数百万个必须正确训练的参数,因此增加了大量的计算成本。与SR不同的是,NN仍然是最基本的向上缩放方法之一,它通过取相邻像素并假设其值来执行插值,从而创建分段阶跃函数逼近,且计算成本很小。

    03

    Robust Data Augmentation Generative Adversarial Networkfor Object Detection

    基于生成对抗性网络(GAN)的数据扩充用于提高目标检测模型的性能。它包括两个阶段:训练GAN生成器以学习小目标数据集的分布,以及从训练的生成器中采样数据以提高模型性能。在本文中,我们提出了一种流程化的模型,称为鲁棒数据增强GAN(RDAGAN),旨在增强用于目标检测的小型数据集。首先,将干净的图像和包含来自不同域的图像的小数据集输入RDAGAN,然后RDAGAN生成与输入数据集中的图像相似的图像。然后,将图像生成任务划分为两个网络:目标生成网络和图像翻译网络。目标生成网络生成位于输入数据集的边界框内的目标的图像,并且图像转换网络将这些图像与干净的图像合并。 定量实验证实,生成的图像提高了YOLOv5模型的火灾检测性能。对比评价表明,RDAGAN能够保持输入图像的背景信息,定位目标生成位置。此外,消融研究表明,RDAGAN中包括的所有组件和物体都发挥着关键作用。

    02

    Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark

    最近已作出大量努力,提出光学遥感图像中的各种目标检测方法。然而,目前对光学遥感图像中目标检测的数据集调查和基于深度学习的方法还不够完善。此外,现有的数据集大多存在一些不足之处,如图像和目标类别数量较少,图像多样性和变异性不足。这些局限性极大地影响了基于深度学习的目标检测方法的发展。本文综述了近年来计算机视觉和地球观测领域基于深度学习的目标检测研究进展。然后,我们提出了一个大规模、公开可用的光学遥感图像目标检测基准,我们将其命名为DIOR。数据集包含23463张图像和190288个实例,覆盖20个目标类。建议的DIOR数据集1)在目标类别、目标实例数量和总图像数量上都是大规模的;2)具有大范围的对象尺寸变化,不仅在空间分辨率方面,而且在跨目标的类间和类内尺寸变化方面;3)由于成像条件、天气、季节、成像质量的不同,成像结果差异较大;4)具有较高的类间相似性和类内多样性。提出的基准可以帮助研究人员开发和验证他们的数据驱动方法。最后,我们评估了DIOR数据集中的几种最先进的方法,为未来的研究奠定了基础。

    05

    遮挡重叠场景下|基于卷积神经网络与RoI方式的机器人抓取检测

    抓取物体堆叠和重叠场景中的特定目标是实现机器人抓取的必要和具有挑战性的任务。在本文中,我们提出了一种基于感兴趣区域(RoI)的机器人抓取检测算法,以同时检测目标及其在物体重叠场景中的抓取。我们提出的算法使用感兴趣区域(RoIs)来检测目标的分类和位置回归。为了训练网络,我们提供了比Cornell Grasp Dataset更大的多对象抓取数据集,该数据集基于Visual Manipulation Relationship Dataset。实验结果表明,我们的算法在1FPPI时达到24.9%的失误率,在抓取我们的数据集时达到68.2%的mAP。机器人实验表明,我们提出的算法可以帮助机器人以84%的成功率掌握多物体场景中的特定目标。

    01

    GAN-Based Day-to-Night Image Style Transfer forNighttime Vehicle Detection

    数据增强在训练基于CNN的检测器中起着至关重要的作用。以前的大多数方法都是基于使用通用图像处理操作的组合,并且只能产生有限的看似合理的图像变化。最近,基于生成对抗性网络的方法已经显示出令人信服的视觉结果。然而,当面临大而复杂的领域变化时,例如从白天到晚上,它们很容易在保留图像对象和保持翻译一致性方面失败。在本文中,我们提出了AugGAN,这是一种基于GAN的数据增强器,它可以将道路行驶图像转换到所需的域,同时可以很好地保留图像对象。这项工作的贡献有三个方面:(1)我们设计了一个结构感知的未配对图像到图像的翻译网络,该网络学习跨不同域的潜在数据转换,同时大大减少了转换图像中的伪影; 2) 我们定量地证明了车辆检测器的域自适应能力不受其训练数据的限制;(3) 在车辆检测方面,我们的目标保护网络在日夜困难的情况下提供了显著的性能增益。与跨领域的不同道路图像翻译任务的竞争方法相比,AugGAN可以生成更具视觉合理性的图像。此外,我们通过使用转换结果生成的数据集训练Faster R-CNN和YOLO来定量评估不同的方法,并通过使用所提出的AugGAN模型证明了目标检测精度的显著提高。

    02

    性能达到SOTA的CSP对象检测网络

    早期传统的对象检测方法都是基于滑动窗口的特征分类,自从深度学习来了之后就产生很多基于深度神经网络效果特别好的对象检测网络模型,比如SSD、YOLO、Faster-RCNN等,但是这些模型都有个缺陷就是依赖anchor设置,总的来说anchor设置对模型最终精度有比较明显的影响。本文中作者通过深度神经网络提取高级抽象语义描述把对象检测中图像上各个对象抽象为BLOB对象检测的中心特征点,同时通过卷积神经网络预测每个中心特征点尺度范围,这样就实现了anchor-free的对象检测网络构建,在几个benchmark对象检测数据集上都取得跟anchor-base网络相同甚至更好的效果。而且针对交叉数据集验证表明该方法有杰出的泛化能力。

    04

    实例分割综述(单阶段/两阶段/实时分割算法汇总)

    目标检测或定位是数字图像从粗到细的一个渐进过程。它不仅提供了图像对象的类,还提供了已分类图像中对象的位置。位置以边框或中心的形式给出。语义分割通过对输入图像中每个像素的标签进行预测,给出了较好的推理。每个像素都根据其所在的对象类进行标记。为了进一步发展,实例分割为属于同一类的对象的单独实例提供了不同的标签。因此,实例分割可以定义为同时解决目标检测问题和语义分割问题的技术。本文对实例分割的背景、存在的问题、技术、发展、流行的数据集、相关工作以及未来的发展进行了讨论。本文为想在实例分割领域进行研究的人们提供了有价值的信息。

    01

    10分钟学会使用YOLO及Opencv实现目标检测(上)|附源码

    计算机视觉领域中,目标检测一直是工业应用上比较热门且成熟的应用领域,比如人脸识别、行人检测等,国内的旷视科技、商汤科技等公司在该领域占据行业领先地位。相对于图像分类任务而言,目标检测会更加复杂一些,不仅需要知道这是哪一类图像,而且要知道图像中所包含的内容有什么及其在图像中的位置,因此,其工业应用比较广泛。那么,今天将向读者介绍该领域中表现优异的一种算算法——“你只需要看一次”(you only look once,yolo),提出该算法的作者风趣幽默可爱,其个人主页及论文风格显示了其性情,目前该算法已是第三个版本,简称YoLo V3。闲话少叙,下面进入教程的主要内容。 在本教程中,将学习如何使用YOLO、OpenCV和Python检测图像和视频流中的对象。主要内容有:

    06

    详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割

    译者 | 王柯凝 【 AI 科技大本营导读】目前,计算机视觉是深度学习领域最热门的研究领域之一。计算机视觉实际上是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习),工程学(机器人、语音、自然语言处理、图像处理),物理学(光学 ),生物学(神经科学)和心理学(认知科学)等等。许多科学家认为,计算机视觉为人工智能的发展开拓了道路。 那么什么是计算机视觉呢? 这里给出了几个比较严谨的定义: ✦ “对图像中的客观对象构建明确而有意义的描述”(Ballard&B

    07

    A full data augmentation pipeline for small object detection based on GAN

    小物体(即32×32像素以下的物体)的物体检测精度落后于大物体。为了解决这个问题,我们设计了创新的体系结构,并发布了新的数据集。尽管如此,许多数据集中的小目标数量不足以进行训练。生成对抗性网络(GAN)的出现为训练体系结构开辟了一种新的数据增强可能性,而无需为小目标注释巨大数据集这一昂贵的任务。 在本文中,我们提出了一种用于小目标检测的数据增强的完整流程,该流程将基于GAN的目标生成器与目标分割、图像修复和图像混合技术相结合,以实现高质量的合成数据。我们的流水线的主要组件是DS-GAN,这是一种基于GAN的新型架构,可以从较大的对象生成逼真的小对象。实验结果表明,我们的整体数据增强方法将最先进模型的性能提高了11.9%AP@。在UAVDT上5 s和4.7%AP@。iSAID上的5s,无论是对于小目标子集还是对于训练实例数量有限的场景。

    02

    A Texture-based Object Detection and an adaptive Model-based Classi cation

    这项工作是神经信息研究所开发的车辆驾驶员辅助系统的一部分。这是一个扩展现有驾驶员辅助系统的概念。在实际生产的系列车辆中,主要使用雷达等传感器和用于检测天气状况的传感器来获取驾驶相关信息。数字图像处理的使用大大扩展了信息的频谱。本文的主要目标是检测和分类车辆环境中的障碍物,以帮助驾驶员进行驾驶行为的决策过程。图像由安装在后视镜上的CCD摄像头获取,并观察车辆前方区域。在没有任何约束的情况下,所提出的方法也适用于后视图。解决了目标检测和经典化的主要目标。目标检测基于纹理测量,并且通过匹配过程来确定目标类型。匹配质量和目标类别之间的高度非线性函数是通过神经网络实现的。

    01
    领券