首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas 查找,丢弃列值唯一的列

前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

5.7K21

Pandas中如何查找某列中最大的值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

40110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何让pandas根据指定列的指进行partition

    将2015~2020的数据按照同样的操作进行处理,并将它们拼接成一张大表,最后将每一个title对应的表导出到csv,title写入到index.txt中。...不断将原有数据放入其中,然后到时候直接遍历keys,根据两个list构建pd,排序后导出。 更python的做法 朴素想法应该是够用的,但是不美观,不够pythonic,看着很别扭。...于是我搜索了How to partition DataFrame by column value in pandas?...boolean index stackoverflow里有人提问如何将离散数据进行二分类,把小于和大于某个值的数据分到两个DataFrame中。...groupby听着就很满足我的需求,它让我想起了SQL里面的同名功能。 df.groupby('ColumnName').groups可以显示所有的列中的元素。

    2.7K40

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

    19.2K60

    删除列中的 NULL 值

    图 2 输出的结果 先来分析图 1 是怎么变成图 2,图1 中的 tag1、tag2、tag3 三个字段都存在 NULL 值,且NULL值无处不在,而图2 里面的NULL只出现在这几个字段的末尾。...这个就类似于 Excel 里面的操作,把 NULL 所在的单元格删了,下方的单元格往上移,如果下方单元格的值仍是 NULL,则继续往下找,直到找到了非 NULL 值来补全这个单元格的内容。...有一个思路:把每一列去掉 NULL 后单独拎出来作为一张独立的表,这个表只有两个字段,一个是序号,另一个是去 NULL 后的值。...一个比较灵活的做法是对原表的数据做列转行,最后再通过行转列实现图2 的输出。具体的实现看下面的 SQL(我偷懒了,直接把原数据通过 SELECT 子句生成了)。...,按值在原表的列出现的顺序设置了序号,目的是维持同一列中的值的相对顺序不变。

    9.9K30

    使用pandas筛选出指定列值所对应的行

    在pandas中怎么样实现类似mysql查找语句的功能: select * from table where column_name = some_value; pandas中获取数据的有以下几种方法...布尔索引 该方法其实就是找出每一行中符合条件的真值(true value),如找出列A中所有值等于foo df[df['A'] == 'foo'] # 判断等式是否成立 ?...位置索引 使用iloc方法,根据索引的位置来查找数据的。...数据提取不止前面提到的情况,第一个答案就给出了以下几种常见情况:1、筛选出列值等于标量的行,用== df.loc[df['column_name'] == some_value] 2、筛选出列值属于某个范围内的行...df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)] 4、筛选出列值不等于某个/些值的行 df.loc[df['column_name

    19.2K10

    Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...图1 创建一个辅助函数 现在,让我们创建一个取平均值的函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在列中对每个学生进行循环?不!...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    3.9K10

    pandas中的缺失值处理

    在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...# 默认为0,表示去除包含 了NaN的行 # axis=1,表示去除包含了NaN的列 >>> df = pd.DataFrame({'A':[1, 2, None], 'B':[1, np.nan,...中的大部分运算函数在处理时,都会自动忽略缺失值,这种设计大大提高了我们的编码效率。

    2.6K10

    根据 key 计算出对应的 hash 值

    根据 key 计算出对应的 hash 值 public V put(K key, V value) { if (value == null) //ConcurrentHashMap...); // 计算键对应的散列码 // 根据散列码找到对应的 Segment return segmentFor(hash).put(key, hash, value..., false); }   然后,根据 hash 值找到对应的Segment 对象: /** * 使用 key 的散列码来得到 segments 数组中对应的 Segment */...相“与”,从而得到 hash 值对应的 segments 数组的下标值,最后根据下标值返回散列码对应的 Segment 对象 return segments[(hash >>> segmentShift...同时,所有读线程几乎不会因本线程的加锁而阻塞(除非读线程刚好读到这个 Segment 中某个 HashEntry 的 value 域的值为 null,此时需要加锁后重新读取该值)。

    1.3K30

    根据数据源字段动态设置报表中的列数量以及列宽度

    在报表系统中,我们通常会有这样的需求,就是由用户来决定报表中需要显示的数据,比如数据源中共有八列数据,用户可以自己选择在报表中显示哪些列,并且能够自动调整列的宽度,已铺满整个页面。...本文就讲解一下ActiveReports中该功能的实现方法。 第一步:设计包含所有列的报表模板,将数据源中的所有列先放置到报表设计界面,并设置你需要的列宽,最终界面如下: ?...第二步:在报表的后台代码中添加一个Columns的属性,用于接收用户选择的列,同时,在报表的ReportStart事件中添加以下代码: /// /// 用户选择的列名称...,并计算需要显示控件的总宽度 for (int c = 0; c < cols.Count; c++) { if (!...源码下载: 动态设置报表中的列数量以及列宽度

    4.9K100

    Pandas中替换值的简单方法

    这可能涉及从现有列创建新列,或修改现有列以使它们适合更易于使用。为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。...在这篇文章中,让我们具体看看在 DataFrame 中的列中替换值和子字符串。当您想替换列中的每个值或只想编辑值的一部分时,这会派上用场。 如果您想继续,请在此处下载数据集并加载下面的代码。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(列)中的字符串...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...每当在列值中找到它时,它就会从字符串中删除,因为我们传递的第二个参数是一个空字符串。

    5.5K30

    Excel:根据固定利率计算投资的未来值(FV函数)

    FV 是一个财务函数,用于根据固定利率计算投资的未来值。 语法:FV(rate,nper,pmt,[pv],[type]) rate:必需。各期利率。 nper:必需。年金的付款总期数。...对于所有参数,支出的款项,如银行存款,以负数表示;收入的款项,如股息支票,以正数表示。 接下来介绍FV函数的两个应用场景。 计算一系列付款的未来值。...比如:你每月存500美元用于退休养老金,预期的平均年利率5%,期限为10年。到期后,你的退休账户中将会有77,641.14美元。 基于上图,在C7的公式中,pv为缺省项,默认退休账户的初值为0。...type也为缺省项,默认付款时间是在每个付款周期的期末。 计算当个总计付款的未来值。比如:你投资了某个项目,投资额为10000美元,预计平均年回报率为2%,按月分红。...基于上图,在C7的公式中,pmt为缺省项,因为不涉及每月付款。type也为缺省项,默认为0,代表分红时间是在每月的月末。如果type取1,未来值的计算结果不变。

    1.9K20

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...唯一的区别是,在该方法中,我们需要指定参数axis=1。下面是.drop()方法的一些说明: 要删除单列:传入列名(字符串)。 删除多列:传入要删除的列的名称列表。...图2 del方法 del是Python中的一个关键字,可用于删除对象。我们可以使用它从数据框架中删除列。 注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。

    7.2K20
    领券