首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《机器学习》学习笔记(一)——机器学习概述

    机器学习源自“人工智能” 达特茅斯会议标志着人工智能这一学科的诞生 第一阶段:推理期(1956-1960s: Logic Reasoning) 主要成就: 自动定理证明系统 (例如,西蒙与纽厄尔的“Logic Theorist”系统) 第二阶段:知识期(1970s -1980s: Knowledge Engineering) 主要成就: 专家系统 (例如,费根鲍姆等人的“DENDRAL”系统) 第三阶段:学习期(1990s -now: Machine Learning) 机器学习是作为“突破知识工程瓶颈”之利器而出现的 恰好在20世纪90年代中后期,人类发现自己淹没在数据的汪洋中,对自动数据分析技术——机器学习的需求日益迫切 今天的“机器学习”已经是一个 广袤的学科领域

    04

    一份关于机器学习端到端学习指南

    人工智能、机器学习已经火了有一阵了,很多程序员也想换到这方向,目前有关于深度学习基础介绍的材料很多,但很难找到一篇简洁的文章提供实施机器学习项目端到端的指南,从头到尾整个过程的相关指南介绍。因此,个人在网上搜集到了许多有关于实施机器学习项目过程的文章,深入介绍了如何实现机器学习/数据科学项目的各个部分,但更多时候,我们只需要一些概括性的经验指导。 在我不熟悉机器学习和数据科学的时候,我曾经寻找一些指导性的文章,这些文章清楚地阐述了在项目的某些步骤时候我需要做什么才能很好地完成我的项目。本文将介绍一些文章,旨在为成功实现机器学习项目提供一份端到端的指南。 基于此,闲话少叙,下面让我们开始吧 简而言之,机器学习项目有三个主要部分:第一部分是数据理解、数据收集和清理,第二部分是模型的实现,第三部分是进行模型优化。一般而言,数据理解、收集和清理需要花费整个项目60-70%的时间。为此,我们需要该领域专家。

    02
    领券