首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    不仅仅是机器学习,快速了解人工智能的六大领域

    提示:阅读本文预计需要10分钟,读完后希望能够帮助您对人工智能的六大领域有一个基本的全貌认识。 12月7月到12月9日,中国大数据峰会在北京召开,公司帮我弄到了票去参加,其实可以发现“大”数据行业现在一个热门话题就是他们和AI的关系,可见AI现在是多大的一个风口,而且也正如前面第一篇所说的一样,除去一些学术专家外,其实大部分的嘉宾会有意或无意地将AI和机器学习、深度学习划上了等号,这点毫不意外,因为对于媒体而言这个等号是对等的,我觉得基本这样理解也没有大的问题,因为现在大多数人说AI的时候,其实说的就是机器

    07

    [算法前沿]--013-为何AI无法解决一般智能问题?

    目前的人工智能系统与人类的智力相去甚远。直接表现是:AI只在特定任务中表现优异,无法将其能力扩展到其他领域。 目前用的AI算法都是可以用数据公式表示出来,并且在很大程度上能够解决此公式。 哪些未被发现以及无法用可计算的数字方式来代表,仍然是无法触及的空白领域。 在人工智能发展的历程中,科学家们经常发明新的方法来利用计算机巧妙的方式解决问题,前几十年的人工智能侧重符号系统。 最流行的机器学习形式是监督学习,其中模型接受一组输入数据(例如湿度和温度)和预期结果(例如下雨概率)的训练。机器学习模型使用此信息来微调,形成从输入映射到输出的一组参数。即使遇到以前没有见过的数据输入时,训练有素的机器学习模型也可以非常准确地预测结果。并不需要去制定明确的规则。 机器学习涉及问题的表述时,它的解决方法是将其设置为三组数字。一组数字表示系统接收的输入,一组数字表示系统生成的输出,第三组数字表示机器学习模型。 机器学习另一个分支是深度学习,常常被比作人脑,其核心是深度神经网络。深度学习模型可以执行非常复杂的任务,如对图像进行分类或转录音频 深度学习的威力在很大程度上取决于架构和表现力。大多数深度学习模型需要标记的数据,而且没有一种通用的神经网络架构可以用以解决所有可能的问题。 在构建模型的过程中,机器学习研究员必须首先定义要解决的问题,然后“找”一个大型训练数据集,然后找出能够解决该问题的深度学习架构。 训练期间从输入到输出都需要数据工程师来指定输入和输出,调整输入参数,神经网络层数和类型、学习效率、优化功能、损失功能和其他不可学习的方面。 许多的神经网络的威力是源自其设计和数据叠加的结果,不是其自主的智能。只能说巧妙的网络结构和数据相结合才有好的模型。 机器学习的其他分支也遵循相同的规则。例如,无人监督的学习不需要标记示例。但是,它仍然需要一个明确的目标,如网络安全中的异常检测。 强化学习是机器学习的另一个流行分支,与人类和动物智力的某些方面非常相似。 强化学习环境通常非常复杂,智能体可以执行的可能操作的数量非常大。因此,强化学习代理需要人类智力的大量帮助来设计正确的奖励、简化问题和选择正确的架构。 总结:目前人工智能工作的方法,是在研究员已经想出了如何构建和简化问题的基础上开发的,以便现有的计算机和流程能够解决这些问题。要拥有真正的一般智能,计算机需要拥有能够定义和构建自己的问题的能力。 大型神经网络并不能解决一般智能的根本问题。人工智能的缺陷往往是其创造者的缺陷,而不是计算决策的内在属性。只是你我都深陷其中不能自拔。

    02

    白宫筹建人工智能委员会,欲用 AI 实现美国梦

    【新智元导读】白宫昨日发文,预计接下来2个月在全美举办4场知识讲座,讨论与人工智能相关的法律政策、社会福利、安全控制及经济应用问题,加深公众对人工智能和机器学习的理解。公告还指出,将于下周成立“人工智能和机器学习委员会”,用于协调全美各界在人工智能领域的行动,并将在奥巴马任期结束前多用人工智能提高政府办公效率。 眼看任期结束在即、大部分人的目光都被 Trump 和希拉里(尤其是 Trump)吸引过去的时候,奥巴马政府决定接下来的两个月里在华盛顿特区、纽约等全美4大城市举办4场免费公开讲座及讨论会,并将成果集

    011
    领券