嘉宾 | 张亦弛 编辑 | 李慧文 随着电商行业的演进,电商商品量及覆盖市场日益增长,怎样发挥量级和市场优势成为一个重要命题,而知识图谱的本体 / 实体 / 属性 / 关系等概念和电商市场的类目架构 / 产品库 / 商品属性天然对应,知识图谱成为电商依赖的重要技术和服务基础。Shopee 商品算法团队研究多语言知识图谱技术,服务全球十多种语言市场,将知识图谱技术应用在多语言大规模商品的预测、商品属性信息抽取、产品库自动生成等电商核心数据场景,在准确率和覆盖率上均有极大的提升,并且把具体业务应用中基于传
纯KG技术领域分享:解密知识谱的通用可迁移构建方法,以阿里巴巴大规模知识图谱核心技术为介绍。
侧重发现模式层等价或相似的类、属性或关系,也成为本体映射(mapping)、本体对齐(alignment)
知识图谱是以图结构描述的知识。与传统数据库相比,知识图谱在存储、查询、检索方面具有诸多优势。传统数据库对数据的组织是以字段为单位,而知识图谱通过关系、属性和实体等数据类型,将数据组织成复杂的图,使其更容易理解。
本文系投稿作品 作者 | 杜圣东 大数据文摘欢迎各类优质稿件 请联系tougao@bigdatadigest.cn Palantir源起 B2B大数据 企业级Google ▼ Palantir(中文名帕兰提尔,源于《指环王》中可穿越时空、洞悉世间一切的水晶球Palantír)被誉为硅谷最神秘的大数据独角兽企业,短短几年内跻身百亿俱乐部,成为全球估值排名第四的初创公司。它的主要客户只在美剧和好莱坞里出现,如美国联邦调查局(FBI)、美国中央情报局(CIA)、美国国家安全局(NSA)、美国军队和
知识图谱技术是人工智能技术的重要组成部分,其建立的具有语义处理能力与开放互联能力的知识库,可在智能搜索、智能问答、个性化推荐等智能信息服务中产生应用价值。
1.Palantir源起:B2B大数据和企业级Google。 Palantir(中文名帕兰提尔,源于《指环王》中可穿越时空、洞悉世间一切的水晶球Palantír)被誉为硅谷最神秘的大数据独角兽企业,短短几年内跻身百亿俱乐部,成为全球最高估值排名第四的初创公司。它的主要客户只在美剧和好莱坞里出现,如美国联邦调查局(FBI)、美国中央情报局(CIA)、美国国家安全局(NSA)、美国军队和各级反恐机构,当然还有如JPMorgan这样的华尔街金融大鳄等等。 关于Palantir的传奇故事很多,CIA通过他家的大数据
知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。
“为了支持城市复杂场景下各类需求,中科大脑知识图谱团队设计开发了一套包含本体可视化设计、数据映射、数据抽取、数据写入、图数据探索的一体化平台,而本文则详细介绍了他们的业务背景、技术选型、平台建设等内容。”
知识图谱(Knowledge Graph)的概念由谷歌2012年正式提出,旨在实现更智能的搜索引擎,并且于2013年以后开始在学术界和业界普及。目前,随着智能信息服务应用的不断发展,知识图谱已被广泛应用于智能搜索、智能问答、个性化推荐、情报分析、反欺诈等领域。本篇是『知识图谱构建与落地实践』的起始篇,我们与来自百度的NLP工程师路遥,一起研究知识图谱的构建流程与技术细节。
随着全球数字经济的蓬勃发展,网络安全与物联网、工业互联网、云计算、5G 等多种场景和技术的融合极大地改变了网络安全防护体系。如何打造智能化的网络安全防护成为了学术界和工业界的热点。基于人工智能的安全运营技术方案(AISecOps)将大幅提升威胁检测、风险评估、自动化响应等关键运营环节的处理效率,大幅减少对专家经验的依赖,助力网络安全运营产业的技术升级。近年来,知识图谱技术得到了迅速发展,本文目的在于探讨智能的安全运营技术中知识图谱技术应该发挥何种作用。
ONT,相信大家也不陌生了,在上次熊市时候,13左右入手了一些,现在唯一后悔的是买少了了了...
AI核心要研究的是如何让计算机去完成以往需要人的智力才能胜任的工作,而人的智能性核心体现在对不同事物的感知能力、推理能力、决策能力。因此要想做出AI产品就离不开对感知的研究,推理机制的研究以及智能决策方向的研究。对感知智能而言,AI已经做了很多突破,例如机器对听觉、视觉、触觉的感知能力,通过摄像头、麦克风或者其他的传感设备,借助语音识别、图像识别的一些算法模型,能够进行识别和理解。
8 月 8 日,腾讯正式发布 Max 二代机器人(以下简称Max)。记者获悉,Max 能够在梅花桩上完成旋转踏步、单桩跳跃、双轮站立等高难度动作。同时,过桩速度达到 “前辈” Jamoca 的 4 倍。
云栖君导读:知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。而自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。
近日,自然语言处理 (NLP) 领域的顶级会议 ACL 2021 和人工智能领域顶级会议 IJCAI 2021 相继揭晓论文录用结果,专注医疗人工智能与大数据技术研究的腾讯天衍实验室共有 3 篇长论文被 ACL 2021 主会接收,1 篇长论文被 Findings of ACL 接收,1 篇长论文被 IJCAI 2021 接收。
知识图谱(knowledge graph)⼀度被专家称为“AI皇冠上的明珠”,因为知识图谱技术是⼈⼯智能技术⽅向中的重要⼀环。它不仅可以为其他⼈⼯智能应⽤提供⽀持,如⾃然语⾔处理、推荐系统等,更可以帮助⼈⼯智能系统⾃主构建和增⻓知识库,提升计算机的理解和分析能⼒,实现“认知智能”的⽬标。Gartner预测,到2025年,知识图谱技术将应⽤于80%的数据分析,⽽2021年这⼀⽐例仅为10%。 最近爆⽕的ChatGPT也是⾃然语⾔处理和理解领域的⼀个重要应⽤,虽然ChatGPT在⽣成和理解⾃然语⾔⽅⾯表现出⾊,但它的知识表⽰和推理能⼒有限,⽆法直接获取和处理结构化知识。因此,知识图谱可以为ChatGPT提供丰富的结构化知识,以增强其对话⽣成和理解的能⼒,进⽽提升对话系统的智能⽔平。
3 月 2 日,腾讯 Robotics X 实验室正式发布首个软硬件全自研的多模态四足机器人 Max,其采用创新性的足轮融合一体式设计,有腿又有轮,不仅拥有“崎岖路面走得稳,平坦路面跑得快”的特长,还能双腿站立“拜年讨红包”。 Max 首次实现了从四足到双足的站立、移动,能完成后空翻、摔倒自恢复等高难度动作,并有较好的平衡能力,在移动稳定性和移动速度上做了很好的兼容,达到了行业领先水平。 这也是腾讯 Robotics X 实验室继会走梅花桩的机器狗 Jamoca 和自平衡自行车之后又一科研进展,腾讯在
互联网的出现为大量内容创建者打开了创造内容产出信息的大门。因此,现在网络上存在大量高质量的用户生成内容。为了帮助计算机对这些文档内容有更好的理解,我们需要一种有效的方式来组织和表示这些数据。针对这个问题,人们认为可以把数据中隐藏的知识用图结构的形式进行表示,于是基于语义网概念提出了知识图谱来解决这个问题。
研究证实,人类从一出生即开始累积庞大且复杂的数据库,包括各种文字、数字、符码、味道、食物、线条、颜色、公式、声音等,大脑惊人的储存能力使我们累积了海量的资料,这些资料构成了人类的认知知识基础。实验表明,将数据依据彼此间的关联性进行分层分类管理,使资料的储存、管理及应用更加系统化,可以提高大脑运作的效率。知识库是实现人工智能的基础元件,知识库是理解人类语言的背景知识,而如何构造这个知识库,找到一种合适的知识表示形式是人工智能发展的重要任务。面向人工智能的表示方法从上世纪五六十年代开始至今,已经陆续出现了多种知识表示方式,包括最开始的一阶谓词逻辑以及现在火热的知识图谱等等。本文是上一篇《事件、事件抽取与事理图谱》的姊妹篇,文章将以知识为中心,对知识、知识表示、知识图谱的历史情况进行介绍。
今天给大家介绍来自中科院的胡伦和IBM的胡鹏伟等人在Briefings in Bioinformatics上发表的文章“A survey on computational models for predicting protein-protein interactions”。预测蛋白质之间的相互作用(PPI)对研究生物体内的各种细胞学机制至关重要,计算学方法能够有效改善传统生物学方法预测PPI时耗时耗力,且预测结果不可靠的问题。在本文中,我们描述了PPI预测所需的各种蛋白质相关数据库,介绍了现有的各种计算学模型的优缺点,然后描述了常用的实验方案和模型性能评价指标,并介绍了几种在线预测工具,最后阐明了预测PPI的未来发展方向。
知识图谱是下一代可信人工智能领域的关键技术组成之一。围绕知识的归纳抽取、演绎推理等处理与分析过程,诸多关键问题逐步被攻克,大幅推动了机器认知技术的发展。在网络空间安全领域,防御技术的智能化升级也亟需成熟、有效的网络空间安全领域知识图谱(以下简称为安全知识图谱)技术体系,为应对强对抗、高动态环境下的攻防博弈提供知识要素与推理智能支撑。为了归纳总结安全知识图谱的关键技术研究进展,本文将尝试通过技术概述的方式,尝试回答以下几个问题,期望为读者较成体系化的安全知识图谱研究现状总结。
在人工智能领域,知识推理技术是一个不断发展的重要分支,它关注于如何让计算机系统使用预先定义的知识库进行逻辑推理,以解决复杂问题。这种技术基于一系列成熟的理论和方法,从传统的符号逻辑推理发展到现代的图谱推理和机器学习融合方法。知识推理不仅涉及知识的有效表示和存储,还包括如何通过逻辑运算对这些知识进行处理和推导出新的知识。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
2012年谷歌首次提出“知识图谱”这个词,由此知识图谱在工业界也出现得越来越多,对于知识图谱以及相关概念的理解确实也是比较绕。自己在研究大数据独角兽Palantir之后开始接触知识图谱,也算对其有了一定了解,这里从三个角度总结一下怎么去理解知识图谱。
上个月,在机器人国际顶会 ICRA 2024 中,AI 科技评论发现:中国机器人企业正在崛起。
本文首先介绍了什么是旅游知识图谱,然后就旅游知识图谱的架构,构建,应用和未来几个方面展开讨论。
【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。我们专知的技术基石之一正是知识图谱-构建AI知识体系-专知主题知识树简介。下面我们特别整理了关于知识图谱的技术全面综述,涵盖基本定义与架构、代表性知识图谱库、构建技术、开源库和典型应用。主要基于的参考文献来自[22]和[40], 本人(Quan)做了部分修整。 引言 随着互联网的发展,网络数据内容呈现爆炸式增长的态势。由于互联网内容的大规模、异质多元、组织结构松散的特点,给人们有效获取信息和知识提出了
此前,我们发布了本体首席技术专家 Ning Hu 在由 ECUG 社区主办的 2021 ECUG Con 全球技术大会上做出的分享第一期和第二期:本体技术视点 | 数据的去中心化协作和可信流动(一)& 本体技术视点 | 数据的中心化协作和可信流动(二)。介绍了“去中心化”、“去中介化”、”多中心化“的几种形态,以及在各类形态下的工作模式。
梅花桩是中国功夫的重要训练道具之一,习练梅花桩也是武侠小说中修炼轻功的基础。现在,梅花桩上迎来了一位新的“练功者”—— 腾讯四足移动机器人 Jamoca。
从网络、可信数据、可验证凭证和数据业务几个角度进行了详细分析与介绍。本期,作为本系列的最后一期,我们将结合一些具体的案例展开。
本课程从知识图谱的历史由来开展,讲述知识图谱与人工智能的关系与现状;知识图谱辐射至各行业领域的应用;在知识图谱关键技术概念与工具的实践应用中,本课程也会讲解知识图谱的构建经验;以及达观在各行业领域系统中的产品开发和系统应用。
【导读】主题知识树是专知的核心结构之一,为构建结构化、体系化、链路化的知识内容库提供基础设施,以及进一步支持个性化主题定制、主题链路知识学习、智能搜索、探索发现等智能应用提供保障。今天为大家简单介绍主题知识树的定义、构建方法和应用,希望大家喜欢,也请多多探讨。 背景 在前面的文章《专知,一个新的认知方式》,我们解释了做专知的思考。面向移动互联时代,我们做两点事情: 一是如何有效生产筛选出专业、可信、优质的内容知识,直达用户需求,解决“专”的问题; 二是如何从自由机制产生的碎片化、乱序、非结构化的内容数据中
2月18日,本体资深架构专家 Ning HU 受邀参与了由哔哔 News 主办的线上圆桌活动《公链的旧问题与新机遇》。活动中,Ning HU 就本体生态布局、公链新机遇以及区块链在应对类似新冠疫情的公共卫生事件中如何发挥作用等热点问题发表了观点。
知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系。其基本组成单位是“实体-关系-实体”三元组(比如人-“居住在”-北京、张三和李四是“朋友”),以及实体及其相关属性-值对,实体间通过关系相互联结,构成网状的知识结构。
从数据的处置量来看,早期的专家系统只有上万级知识体量,后来阿里巴巴和百度推出了千亿级、甚至是兆级的知识图谱系统。
人工智能的发展,在过去几十年起起落落。在算力和数据不是瓶颈的今天,基于深度学习的信号处理、语音识别、机器视觉等感知智能成为当前 AI 的主流路线。
选自arXiv 作者:Lidong Yu 等 机器之心编译 参与:李泽南、李亚洲 由北京理工大学贾云得教授研究组提出的立体匹配新方法着重于成本聚合问题,在 KITTI 和 Scene Flow 基准测试中超越了此前业内的最佳水平。本文已提交今年 2 月举行的 AAAI 2018 大会,并成为 Spotlight poster 论文。 立体匹配(Stereo matching)是计算机视觉社区研究的一个基础问题。立体匹配的研究目标是计算由立体照相机收集的图像的视差图(disparity map)。这种视差图在
2012年5月17日,Google正式提出了知识图谱(Knowledge Graph)的概念,其初衷是为了优化搜索引擎返回的结果,增强用户搜索质量及体验。
DeFi 是区块链技术领域热议的焦点。我们在后台收到了众多读者的反馈,最近几期会围绕 DeFi 带来技术、模式和价值等多方面的详解。这一期我们追本溯源,探讨 DeFi 借贷这一模式。
本项目利用知识图谱、深度学习技术,为企业及个人构建企业知识库,从而实现集知识管理、知识发现、知识服务等功能于一身的企业深度智能运营和运维平台,为企业提供知识化、数字化和智能化的管理服务,致力于帮助传统中小企业解决构建自身专业知识库的构建和管理问题,通过开箱即用、人机智能交互的方式提高企业的运营、运维的效率。促进我国对人工智能,知识库领域的核心技术能力,极大推进了人工智能“三步走”战略。
选自arXiv 机器之心编译 编辑:小舟、蛋酱 世界模型在实体机器人上能发挥多大的作用? 教机器人解决现实世界中的复杂任务,一直是机器人研究的基础问题。深度强化学习提供了一种流行的机器人学习方法,让机器人能够通过反复试验改善其行为。然而,当前的算法需要与环境进行过多的交互才能学习成功,这使得它们不适用于某些现实世界的任务。 为现实世界学习准确的世界模型是一个巨大的开放性挑战。在最近的一项研究中,UC 伯克利的研究者利用 Dreamer 世界模型的最新进展,在最直接和最基本的问题设置中训练了各种机器人:无
导读:目前为止 IT 产业经历了六次浪潮,分别为:大型机时代,小型机时代,个人电脑时代,桌面互联网时代,移动互联网时代和 AIOT 时代。在这些时代背后可以发现是人机交互方式的变化:从鼠键交互,到触控交互,再到语音智能交互,可以看到人机交互的方式在向更自然更直接化的方式演进。今天会和大家分享基于知识图谱的问答在美团智能交互场景中的应用和演进。
一边是阿里、华为、商汤等国内巨头纷纷发布ChatGPT相关产品,一边是ChatGPT泄露三星机密数据,被花旗银行、高盛、摩根大通、德意志银行等企业禁用,人工智能带来的机遇和风险就这样不期而遇。 在此背景下,FreeBuf咨询特别发布洞察报告《GPT浪潮席卷下的安全思考》,从GPT算法迭代路径入手,深入探讨以GPT为代表的算法模型可能面对的安全隐患、应对举措及未来发展态势。 报告关键发现 1. GPT-1-GPT-3发展期间参数规模呈指数级扩张,InstructGPT引入的奖励机制允许模型以较少的参数实现更优
随着数字化进程的不断推进,以及随着chatgpt的横空出世。在工业领域根据声音进行故障诊断的算法逐渐增多。最近一年做了不少工业领域拾音的产品。他们的需求可以说和传统的拾音器有很大的区别。
安全知识图谱作为安全领域的专用知识图谱,是实现网络安全认知智能的关键,亦是应对网络空间高级、持续、复杂威胁与风险不可或缺的技术基础。绿盟科技于近日推出安全知识图谱技术白皮书《践行安全知识图谱,携手迈进认知智能》,旨在对安全知识图谱概念内涵、核心框架、关键技术和应用实践进行全面总结与介绍,期望为读者带来全新的技术思考,助力网络安全智能化迈入认知智能阶段。
导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项目”开始实施并深受校内师生的认可。项目通过整合建设课程模块,形成了大数据思维与技能、跨界学习、实操应用相结合的大数据课程体系和线上线下混合式教学模式,显著提升了学生大数据分析能力和创新应用能力。 回首2022年,清华大学大数据能力提升项目取得了丰硕的成果,同学们将课程中学到的数据思维和技能成功
领取专属 10元无门槛券
手把手带您无忧上云