首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    专业的知识图谱应用门槛正在被不断降低

    知识图谱(knowledge graph)⼀度被专家称为“AI皇冠上的明珠”,因为知识图谱技术是⼈⼯智能技术⽅向中的重要⼀环。它不仅可以为其他⼈⼯智能应⽤提供⽀持,如⾃然语⾔处理、推荐系统等,更可以帮助⼈⼯智能系统⾃主构建和增⻓知识库,提升计算机的理解和分析能⼒,实现“认知智能”的⽬标。Gartner预测,到2025年,知识图谱技术将应⽤于80%的数据分析,⽽2021年这⼀⽐例仅为10%。   最近爆⽕的ChatGPT也是⾃然语⾔处理和理解领域的⼀个重要应⽤,虽然ChatGPT在⽣成和理解⾃然语⾔⽅⾯表现出⾊,但它的知识表⽰和推理能⼒有限,⽆法直接获取和处理结构化知识。因此,知识图谱可以为ChatGPT提供丰富的结构化知识,以增强其对话⽣成和理解的能⼒,进⽽提升对话系统的智能⽔平。

    02

    知识表示发展史:从一阶谓词逻辑到知识图谱再到事理图谱

    研究证实,人类从一出生即开始累积庞大且复杂的数据库,包括各种文字、数字、符码、味道、食物、线条、颜色、公式、声音等,大脑惊人的储存能力使我们累积了海量的资料,这些资料构成了人类的认知知识基础。实验表明,将数据依据彼此间的关联性进行分层分类管理,使资料的储存、管理及应用更加系统化,可以提高大脑运作的效率。知识库是实现人工智能的基础元件,知识库是理解人类语言的背景知识,而如何构造这个知识库,找到一种合适的知识表示形式是人工智能发展的重要任务。面向人工智能的表示方法从上世纪五六十年代开始至今,已经陆续出现了多种知识表示方式,包括最开始的一阶谓词逻辑以及现在火热的知识图谱等等。本文是上一篇《事件、事件抽取与事理图谱》的姊妹篇,文章将以知识为中心,对知识、知识表示、知识图谱的历史情况进行介绍。

    02

    构建AI知识体系-专知主题知识树简介

    【导读】主题知识树是专知的核心结构之一,为构建结构化、体系化、链路化的知识内容库提供基础设施,以及进一步支持个性化主题定制、主题链路知识学习、智能搜索、探索发现等智能应用提供保障。今天为大家简单介绍主题知识树的定义、构建方法和应用,希望大家喜欢,也请多多探讨。 背景 在前面的文章《专知,一个新的认知方式》,我们解释了做专知的思考。面向移动互联时代,我们做两点事情: 一是如何有效生产筛选出专业、可信、优质的内容知识,直达用户需求,解决“专”的问题; 二是如何从自由机制产生的碎片化、乱序、非结构化的内容数据中

    07

    1小时学会走路,10分钟学会翻身,世界模型让机器人迅速掌握多项技能

    选自arXiv 机器之心编译 编辑:小舟、蛋酱 世界模型在实体机器人上能发挥多大的作用? 教机器人解决现实世界中的复杂任务,一直是机器人研究的基础问题。深度强化学习提供了一种流行的机器人学习方法,让机器人能够通过反复试验改善其行为。然而,当前的算法需要与环境进行过多的交互才能学习成功,这使得它们不适用于某些现实世界的任务。 为现实世界学习准确的世界模型是一个巨大的开放性挑战。在最近的一项研究中,UC 伯克利的研究者利用 Dreamer 世界模型的最新进展,在最直接和最基本的问题设置中训练了各种机器人:无

    03

    大数据能力提升项目|学生成果展系列之五

    导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项目”开始实施并深受校内师生的认可。项目通过整合建设课程模块,形成了大数据思维与技能、跨界学习、实操应用相结合的大数据课程体系和线上线下混合式教学模式,显著提升了学生大数据分析能力和创新应用能力。 回首2022年,清华大学大数据能力提升项目取得了丰硕的成果,同学们将课程中学到的数据思维和技能成功

    04
    领券