在R中,可以使用循环或者函数来实现将一个函数在整个数据集上重复n次的操作。
以上两种方法都可以实现在整个数据集上重复调用函数n次的操作。根据具体的需求和数据集的大小,选择合适的方法来实现。
seuratObj <- RunHarmony(sce, "orig.ident")
其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出来,因为该数据集是线性可分的,左图是三种可能的分类方式,虚线基本没有办法将两种类别划分,另外
关注公众号“智能算法”即可一起学习整个系列的文章。 文末查看本文代码关键字,公众号回复关键字下载代码。 其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出
元素被选中的机会并不相等,而是由相对“权重”(或概率)被选中的,是偏心的,这就是加权随机。
最近,深度学习之父Geoffrey Hinton带领的谷歌大脑团队,提出了一种防御对抗攻击的新方法。
我总是听到刚入行不久的程序员这样说:知道自己要实现什么功能,同时处理逻辑和基本语法也都明白,但是就不知道该怎么写代码。如果把别人的的代码给你看,或者有人给你你一些指导,或许你能明白其中的思路。但是,在实际开发时仍然障碍重重。即使语法或逻辑都明白,也很难自己的想法转化为代码。在本文中我将会告诉大家我自己是怎么做的,还有一些解决典型问题的方法,希望能够对大家有所帮助。
java中和hash相关并且常用的有两个类hashTable和hashMap,两个类的底层存储都是数组,这个数组不是普通的数组,而是被称为散列表的东西。
不知道大家平时在使用R的时候有没有见到过这样一些比较奇怪的操作符,%>%, %T>%, %$% 和 %<>%。今天小编就来跟大家掰次掰次。这些操作符都是来自于一个叫做magrittr的R包,所以我们先来安装一下。
在网络技术不断发展和电子商务规模不断扩大的背景下,商品数量和种类快速增长,用户需要花费大量时间才能找到自己想买的商品,这就是信息超载问题。为了解决这个难题,个性化推荐系统(Recommender System)应运而生。
因为文章开始的上古时期回答是正确的。web公开报告是不会即时对显示页面进行更新的。
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
决策树定义 首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于2.4cm的是setos
算法二:决策树算法 决策树定义 首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于2.4cm的是setosa(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,宽度小于1.8cm的是versicolor(图中红色的分类),其余的就是virginica(图中黑色的分类) 我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树: 这种从数据产生决
来源:DeepHub IMBA本文约2000字,建议阅读5分钟本文介绍了10个Pandas的常用技巧。 本文所整理的技巧与以前整理过10个Pandas的常用技巧不同,你可能并不会经常的使用它,但是有时候当你遇到一些非常棘手的问题时,这些技巧可以帮你快速解决一些不常见的问题。 1、Categorical类型 默认情况下,具有有限数量选项的列都会被分配object 类型。但是就内存来说并不是一个有效的选择。我们可以这些列建立索引,并仅使用对对象的引用而实际值。Pandas 提供了一种称为 Categori
来源:机器学习杂货店本文约3500字,建议阅读10+分钟本文为你介绍 KMeans 的一个替代方案之一,高斯混合模型。 高斯混合模型(后面本文中将使用他的缩写 GMM)听起来很复杂,其实他的工作原理和 KMeans 非常相似,你甚至可以认为它是 KMeans 的概率版本。这种概率特征使 GMM 可以应用于 KMeans 无法解决的许多复杂问题。 因为KMeans的限制很多,比如:它假设簇是球形的并且大小相同,这在大多数现实世界的场景中是无效的。并且它是硬聚类方法,这意味着每个数据点都分配给一个集群,这也是不
本次公开课AI科技大本营邀请到了阿里巴巴的高级算法专家张相於,他将从数据的概率分布开始介绍机器学习核心概念之间的有机关系,帮助大家建立知识脉络,做到知识的有机吸收。同时,讲解机器学习的元知识,介绍系统性持续学习的方法和技巧。最后介绍算法工程落地能力的入门和提高,避免只会算法不会落地的尴尬。当然,随手推荐一波独特有效的学习资料不在话下。
在工作中有很多场景需要通过Ajax请求发送数据,像是注册、登录、提交用户反馈等。用户在点击了“确认”按钮之后有可能一段时间内没有收到反馈页面无任何反应,然后就接着连续多次点击“确认”按钮导致发送n个重复的请求,给服务器造成不小压力。
这篇文章会从 FAIR 在基本模块上的创新开始,谈到 CNN,再到 one-shot 物体检测。之后会讲实例分割的创新。最后聊聊依靠弱半监督模型来扩展实例分割。 AI 科技评论按:本文为雷锋字幕组编译的技术博客,原标题 Recent FAIR CV Papers - FPN, RetinaNet, Mask and Mask-X RCNN,作者为 Krish。 翻译 | 李石羽 林立宏 整理 | 凡江 特征金字塔网络 特征金字塔网络 (FPN) [1] 发表在 2017 年的 CVPR 上。如果你
当损失函数是0-1损失时,测试误差就变成了常见的测试数据集上的误差率error rate
Boosting算法是一种把若干个分类器整合为一个分类器的方法,也就是一种集成分类方法(Ensemble Method)。
实际上,R 中有大量的内置数据集可用于分析和实践,我们也可以在R 中创建模拟特定分布的数据。而在实际工作中,数据分析者更多时候面对的是来自多种数据源的外部数据,即各式各样扩展名的数据文件,如 .txt、.csv、.xlsx、.xls 等。不同扩展名的文件代表不同的文件格式,这常常会给分析者带来困扰。
很久没有更新公众号了,这里大猫的R语言课堂给大家说声抱歉。由于两位作者这半年以来实在是太忙了,捱到了国庆假期,终于抽出时间来更新公众号,在此也祝各位水友双节快乐!!!
关于程序中的交互的行为我们其实一直都在发生,比如,当你要获取用户的输入内容,并向用户打印出一些返回的结果,就会用到了 input() 与 print() 函数。
自Andrew Ng的machine learning课程。 目录: Problem Motivation Gaussian Distribution Algorithm Developing and Evaluating an Anomaly Detection System Anomaly Detection vs. Supervised Learning Choosing What Features to Use Multivariate Gaussian Distribution Anomaly D
如果你没有听过,那么请记住:数据清洗是数据科学工作流程的基础。机器学习模型会根据你提供的数据执行,混乱的数据会导致性能下降甚至错误的结果,而干净的数据是良好模型性能的先决条件。当然干净的数据并不意味着一直都有好的性能,模型的正确选择(剩余 20%)也很重要,但是没有干净的数据,即使是再强大的模型也无法达到预期的水平。
推荐导读:本篇为树模型系列第三篇,旨在从最简单的决策树开始学习,循序渐进,最后理解并掌握复杂模型GBDT,Xgboost,为要想要深入了解机器学习算法和参加数据挖掘竞赛的朋友提供帮助。
1.引 言 上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。 ◆ ◆ ◆ 2.数据与网络的设定 前一节提到前向计算涉及到的组件(主要是神经元)设定。神经网络结构和参数设定完毕之后,我们就得到得分函数/score function(忘记的同学们可以翻看一下之前的博文),总体说来,一个完整的神经网络就是在不断地进行线性映射(权重和input的内积)和非线性映射(部分激励函数作用)的过程。这一节我们会展开来讲
Matt MacGillivray 拍摄,保留部分权利 翻译 | AI科技大本营(rgznai100) 长短记忆型递归神经网络拥有学习长观察值序列的潜力。它似乎是实现时间序列预测的完美方法,事实上,它可能就是。在此教程中,你将学习如何构建解决单步单变量时间序列预测问题的LSTM预测模型。 在学习完此教程后,您将学会: 如何为预测问题制定性能基准。 如何为单步时间序列预测问题设计性能强劲的测试工具。 如何准备数据以及创建并评测用于预测时间序列的LSTM 递归神经网络。 让我们开始吧。 Python中使用
我们先来看看昨天留下的问题,如果数组当中的元素存在重复,让我们返回元素最早出现的位置,应该怎么操作呢?
假如你有一个一千列和一百万行的数据集。无论你从哪个角度看它——小型,中型或大型的数据——你不可能看到它的全貌。将它放大或缩小。使它能够在一个屏幕里显示完全。由于人的本质,如果能够看到事物的全局的话,我们就会有更好的理解。有没有办法把数据都放到一张图里,让你可以像观察地图一样观察数据呢? 将深度学习与拓扑数据分析结合在一起完全能够达到此目的,并且还绰绰有余。 1、它能在几分钟内创建一张数据图,其中每一个点都是一个数据项或一组类似的数据项。 基于数据项的相关性和学习模式,系统将类似的数据项组合在一起。这将使数据
在存在持续的潜在变量而难以处理的后验分布和大数据集的情况下,我们如何在概率模型中进行有效的推理和学习? 我们引入了一种随机变分推理和学习算法,可以扩展到大型数据集,并且在一些温和的不同的可用性条件下,甚至可以在棘手的情况下工作。 我们的贡献是双重的。 首先,我们证明了变分下界的重新参数化产生了一个下限估计,可以使用标准随机梯度方法直接优化。 其次,我们展示了i.i.d. 每个数据点具有连续潜变量的数据集,通过使用所提出的下界估计器将近似推理模型(也称为判别模型)拟合到难治性后验,可以使后验推断特别有效。 理论优势反映在实验结果中。
在这个时代,无论是信息消费者还是信息生产者都遇到了很大的挑战:作为信息消费者,如何从大量信息中找到自己感兴趣的信息是一件非常困难的事情;作为信息生产者,如何让自己生产的信息脱颖而出,受到广大用户的关注,也是一件非常困难的事情。推荐系统就是解决这一矛盾的重要工具。
目前我们可以在网络上搜索到大量制作好的数据集,那么如何快速制作属于自己的数据集呢?
Power BI在2018年11月更新后,使得我们可以将列和度量值放到一个文件夹中管理,这样我们可以使复杂的报告编写环境变得简洁一些。
该方法用来将字符串中的某些子串替换为需要的内容,接受两个参数,第一个参数可以为正则或者子字符串,表示匹配需要被替换的内容,第二个参数为被替换的新的子字符串。如果声明为全局匹配则会替换所有结果,否则只替换第一个匹配到的结果。
在Mybatis出现以前,乃至于与mybatis相似的框架出现以前,我们是怎么连接数据库的? 依靠JDBC 而传统的JDBC连接数据库,大致是以下代码:
地球引擎有一个用户界面API,允许用户直接从JavaScript代码编辑器中构建和发布交互式Web应用。许多读者会在其他章节中遇到对ui.Chart的调用,但还有更多的界面功能可用。特别是,用户可以利用ui函数来为他们的地球引擎脚本构建整个图形用户界面(GUI)。GUI可以包括简单的部件(如标签、按钮、复选框、滑块、文本框)以及更复杂的部件(如图表、地图、面板)来控制GUI布局。关于ui部件的完整列表和关于面板的更多信息可以在下面的链接中找到。一旦GUI构建完成,用户可以通过点击代码编辑器中脚本面板上方的应用程序按钮,从JavaScript代码编辑器中发布应用程序。
长短记忆型递归神经网络拥有学习长观察值序列的潜力。 它似乎是实现时间序列预测的完美方法,事实上,它可能就是。 在此教程中,你将学习如何构建解决单步单变量时间序列预测问题的LSTM预测模型。 在学习完
决策树是一种非线性有监督分类模型,随机森林是一种非线性有监督分类模型。线性分类模型比如说逻辑回归,可能会存在不可分问题,但是非线性分类就不存在。 二、具体原理
上一篇我们介绍了什么是集合,并且手动实现了一个集合的类。简单总结,集合就是一组元素唯一,并且没有顺序的数据集,关键是元素唯一。
作者:Sebastian Raschka 翻译:reason_W 编辑:周翔 简介 正确使用模型评估、模型选择和算法选择技术无论是对机器学习学术研究还是工业场景应用都至关重要。本文将对这三个任务的相关技术进行回顾,并就每种技术的理论和实证研究的主要优缺点进行讨论。文章还将就机器学习算法中的超参数调优给出尽可能的建议,用以实现最佳的算法效果。文中内容涉及很多常用方法,比如模型评估和选择中的Holdout方法等;介绍了bootstrap技术的不同变体,通过正态逼近得到置信区间来衡量性能估计(performa
来源:DeepHub IMBA本文约3200字,建议阅读6分钟本文我们将说明如何量化选择最佳模型过程中涉及的随机性。 kaggle比赛里经常会发生shake up的现象,说的直接点就是在有切榜或多榜单的比赛中,可能存在榜单排名激烈震动的情况,例如下面这个例子:Data Science Bowl 2017 我们看到,第一名是从公榜上升了130多名,而第5名则上升了349。 公榜结果就是好的模型私榜不一定就好,因为Kaggle是模拟real world的时刻在变化的数据,不一定遵从过去的规律,用过去的数据是无
kaggle比赛里经常会发生shake up的现象,说的直接点就是在有切榜或多榜单的比赛中,可能存在榜单排名激烈震动的情况,例如下面这个例子:Data Science Bowl 2017
模型表现差异很大的可能原因是什么?换句话说,为什么在别人评估我们的模型时会失去稳定性?
在处理大型数据过程中,R语言的内存管理就显得十分重要,以下介绍几种常用的处理方法。 1,设置软件的内存
问题描述:从0到9这10个数字任选3个不重复的数字,能构成哪些三位数? So easy!看到这样的问题,很多人会写出类似(注意,只是类似,我为了使得本文几个函数具有相同的调用形式,给demo1和demo2加了点多余的东西)下面这样的代码: def demo1(data, k=3): '''从data中选择不同的3个数字组成三位数''' assert k == 3, 'k must be 3' for i in data: if i == 0:continue ii = i*100
领取专属 10元无门槛券
手把手带您无忧上云