MillerRabin算法是一种高效的质数判断方法。虽然是一种不确定的质数判断法,但是在选择多种底数的情况下,正确率是可以接受的。PollardRho是一个非常玄学的方式,用于在O(n1/4)的期望时间复杂度内计算合数n的某个非平凡因子。事实上算法导论给出的是O(p),p是n的某个最小因子,满足pp与n/pn/p互质。但是这些都是期望,未必符合实际。但事实上PollardRho算法在实际环境中运行的相当不错。这里我们要写一个程序,对于每个数字检验是否是质数,是质数就输出Prime;如果不是质数,输出它最大的质因子是哪个
质数是指大于1且只能被1和自身整除的正整数。本文将介绍如何使用Java编程语言判断一个数是否为质数。通过给出的代码示例和解释,您将了解到判断质数的基本原理和实现方法。
质数相关的题目在蓝桥杯中经常出现。例如,2016年蓝桥杯省赛初赛第四题就是要求判断一个数是否为质数。此外,还有许多与素数相关的题目,如求一定范围内素数数量、素数和等等。因此,掌握质数的判断、筛法、求和等基本算法是参加蓝桥杯的必备技能之一。
双循环找出是否有这个值,根据第二个特性,我们可以跳过一些第二层循环,算法更具效率。
自己动手,丰衣足食;Python在手,妹子我有!让我们以入门级的Python编码,外加高中数学级别的算法来破解这个相亲算法题:
最近读者群里有个读者跟我私信,说去面试微软遇到了一系列和数学相关的算法题,直接懵圈了。我看了下题目,发现这些题其实就是 LeetCode 上面「丑数」系列问题的修改版。
要生成RSA的密钥,第一步就是要寻找质数,本节专讲如何寻找质数。 我们的质数(又称素数)、合数一般是对正整数来讲,质数就是只有1和本身两个的正整数,合数至少有3个约数,而1既不是合数也不是质数。 质数有无穷多个,这个早在古希腊时期就被证明了,使用反证法很容易证明:假设质数只有有限多,分别为a1.....an,则a1*a1....*an+1大于所有的质数,却不以任何质数为约数,推出矛盾,从而假设错误。 在质数的分布上,有个定理: lim ∏ (n)/(n/ln(n)) = 1 n→∞
在昨天的文章中,我们讲到了 RSA 算法。RSA 算法的根本原理中,有两个核心质数 p和 q,他们相乘得到一个数 n。由于反向从 n 分解出 p 和 q 非常困难,所以只要 p 和 q 足够大,RSA 算法在现在的计算机水平下就无法被破解。
给定数 n(n>2),根据质数的定义,很容易想到遍历 [2,n-1] 看是否存在某个数可以整除它,如果存在则不是素数。
原来早有耳闻的「米勒-拉宾检验」,可以认为是费马小定理的优化版,被广泛用于计算机判断某数是否为质数。…(虽然路径并不相同。AKS更像是对费马素性检验思路上的优化)
相信现在各位看官都在小学阶段学习过质数,但那时年纪尚小,听质数这个数学名词很陌生,在老师的讲述后才有所理解
算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!欢迎记录下你的那些努力时刻(算法学习知识点/算法题解/遇到的算法bug/等等),在分享的同时加深对于算法的理解,同时吸收他人的奇思妙想,一起见证技术er的成长~
LeetCode.jpg 题目:计数质数 描述:统计所有小于非负整数 n 的质数的数量。 案例1: 输入: 10 输出: 4 解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。 质数的定义:质数 方案一:判断质数 代码一: func countPrimes(_ n: Int) -> Int { if n < 3 { return 0 } var count = 1 //判断大于3的奇数 for i in 3..<n
一百以内质数之和 判断是否为质数 判断一个整数是否为质数比较简单,即除了自身和1以外不可被别的数整除。不过根据数学理论证明,不用从2检查到n,到int(sqrt(n))+1即可,可以提高效率。注意返回值为True或False,方便后续的boolean索引。 def is_prime(num): if num <= 1: return False for i in range(2,int(np.sqrt(num))+1): if num % i == 0:
📋前言📋 💝博客:【红目香薰的博客_CSDN博客-计算机理论,2022年蓝桥杯,MySQL领域博主】💝 ✍本文由在下【红目香薰】原创,首发于CSDN✍ 🤗2022年最大愿望:【服务百万技术人次】🤗 💝专栏地址:【https://blog.csdn.net/feng8403000/category_11958599.html】💝 ---- 为了帮助很多想搞算法但又害怕自己搞不定的孩子们,老师付准备了200个入门的逻辑练习题,在这200个逻辑练习题下可以加强你们的基础算法能力,以次
有关素数的定义:质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。
代码已经放上github : https://github.com/chroje/RSA
判断是否为素数 对于一个任意一个正整数,如果它只能被自身或1整除,称其为素数,否则为合数。1比较特殊,既不是质数也不是合数。
大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。
2.费尔马素性测试法法。费马小定理:假如p是质数,a是整数,且a、p互质,那么a的(p-1)次方除以p的余数恒等于1,即:a^(p-1)≡1(mod p)。
我们提前设置一个标记数组prime[N] ,提前标记好数字的质数状态,这样就能减少重复判断。
RSA加密算法是由罗纳德·李维斯特(Ronald Linn Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德尔曼(Leonard Adleman)于1977年共同发明的。它的密钥计算规则可由下图所示。
哈希表是一种非常重要的数据结构,几乎所有的编程语言都直接或者间接应用这种数据结构。
每当学习一门计算机语言,我们也要做一些练习以便逐步熟悉。随着我们对这种编程语言本身支持的抽象手段理解的过程,以下这些问题,基本可以在几乎每门编程语言学习的过程中完成,这些语言可以包含但不限于C、C++、Shell、awk、Python、JavaScript、Java、Scala、Ruby、Lisp(Common Lisp、Scheme、Clojure)、Prolog、Haskell等。
之前我写了一篇文章 SQL 生成斐波那契数列,在原来的基础上,今天就来实现使用 SQL 获取 100 以内的质数。
判断是否为质数,我之前用 js 写过,详情参见:http://blog.csdn.net/FungLeo/article/details/51483844
-欢迎 这篇文章讨论了数论中每个程序员都应该知道的几个重要概念。本文的内容既不是对数论的入门介绍,也不是针对数论中任何特定算法的讨论,而只是想要做为数论的一篇参考。如果读者想要获取关于数论的更多细节,文中也提供了一些外部的参考文献(大多数来自于 Wikipedia 和 Wolfram )。 0、皮亚诺公理 整个算术规则都是建立在 5 个基本公理基础之上的,这 5 个基本公理被称为皮亚诺公理。皮亚诺公理定义了自然数所具有的特性,具体如下: (1)0是自然数; (2)每个自然数都有一个后续自然数; (3)0不是
在做题之前,需要了解的就是有关素数的定义:质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。
百度百科中:质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。
2020-09-22:已知两个数的最大公约数和最小公倍数,并且这两个数不能是最大公约数和最小公倍数本身。如何判断这两个数是否存在?
最近小李在看吴军博士的《浪潮之巅》一书,下册书中讲到了Google公司的发展故事,作者用了其14个不为人知或被公众忽略的侧面来描述这个传奇的公司。而在对Google公司的介绍中,一张插图引起了我的注意,这张插图是Google在101号高速公路旁打的大幅招聘广告。
质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。分解质因数的方法
前面文章我们讲了AES算法,AES算法是一种是对称加密算法,本文我们来介绍一个十分常用的非对称加密算法RSA。
计算质数的关键是要减少运算量。如果傻呢,就从1循环到这个数字来进行全量循环计算。聪明一点就不需要了,只需要循环到这个数字的平方根的数字即可。
最近学习了一种筛素数的方法,能够以时间复杂度O(n),即线性时间完成。一开始不能理解其中的一句话,搜索了很久,大部分结果都是一群人在网上卖萌。好好思索了一番,按照自己的思路终于理解了。本文的内容绝不卖萌,但也难称严谨,仅以备忘,欢迎斧正。
在斐波那契数列中,通常是第一个和第二个数是1,后续的每个数是前两个数之和。因此,第30个数可以通过递归或循环方式计算。
本系列为C++算法学习系列,会介绍 算法概念与描述,入门算法,基础算法,数值处理算法,排序算法,搜索算法,图论算法, 动态规划等相关内容。本文为枚举算法与模拟算法部分。
雷锋网授权转载 网站: http://www.leiphone.com/ 微信: leiphone-sz 导读:你可能认为量子计算机还属于科幻范畴,但近几十年它就有可能变成现实,而其超强的计算机能力也会对现有的加密技术构成威胁。那有没有加密方法能抵御量子计算机攻击呢?连线的这篇文章就对此做了科普,并指出这不仅是技术问题,更需要安全与效率的平衡。 今年8月的时候,美国国家安全局(NSA)在其网页上更新了一段不起眼的内容,他们计划对现在政府和军方加密数据的方式更新,以期能够阻挡来自量子计算机的攻击。NSA的发言
本系列文章【数据结构与算法】所有完整代码已上传 github,想要完整代码的小伙伴可以直接去那获取,可以的话欢迎点个Star哦~下面放上跳转链接
关于搜寻一定范围内素数的算法及其复杂度分析 ——曾晓奇 关于素数的算法是信息学竞赛和程序设计竞赛中常考的数论知识,在这里我跟大家讲一下寻找一定范围内素数的几个算法。看了以后相信 对大家一定有帮助。 正如大家都知道的那样,一个数 n 如果是合数,那么它的所有的因子不超过sqrt(n)--n的开方,那么我们可以用这个性质用最直观的方法 来求出小于等于n的所有的素数。 num = 0; for(i=2; i<=n; i++) { for(j=2; j<=sqrt(i); j++) if( j%i==0 ) break; if( j>sqrt(i) ) prime[num++] = i; //这个prime[]是int型,跟下面讲的不同。 } 这就是最一般的求解n以内素数的算法。复杂度是o(n*sqrt(n)),如果n很小的话,这种算法(其实这是不是算法我都怀疑,没有水平。当然没 接触过程序竞赛之前我也只会这一种求n以内素数的方法。-_-~)不会耗时很多. 但是当n很大的时候,比如n=10000000时,n*sqrt(n)>30000000000,数量级相当大。在一般的机子它不是一秒钟跑不出结果,它是好几分钟都跑不 出结果,这可不是我瞎掰的,想锻炼耐心的同学不妨试一试~。。。。 在程序设计竞赛中就必须要设计出一种更好的算法要求能在几秒钟甚至一秒钟之内找出n以内的所有素数。于是就有了素数筛法。 (我表达得不清楚的话不要骂我,见到我的时候扁我一顿我不说一句话。。。) 素数筛法是这样的: 1.开一个大的bool型数组prime[],大小就是n+1就可以了.先把所有的下标为奇数的标为true,下标为偶数的标为false. 2.然后: for( i=3; i<=sqrt(n); i+=2 ) { if(prime[i]) for( j=i+i; j<=n; j+=i ) prime[j]=false; } 3.最后输出bool数组中的值为true的单元的下标,就是所求的n以内的素数了。 原理很简单,就是当i是质(素)数的时候,i的所有的倍数必然是合数。如果i已经被判断不是质数了,那么再找到i后面的质数来把这个质 数的倍数筛掉。 一个简单的筛素数的过程:n=30。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 第 1 步过后2 4 ... 28 30这15个单元被标成false,其余为true。 第 2 步开始: i=3; 由于prime[3]=true, 把prime[6], [9], [12], [15], [18], [21], [24], [27], [30]标为false. i=4; 由于prime[4]=false,不在继续筛法步骤。 i=5; 由于prime[5]=true, 把prime[10],[15],[20],[25],[30]标为false. i=6>sqrt(30)算法结束。 第 3 步把prime[]值为true的下标输出来: for(i=2; i<=30; i++) if(prime[i]) printf("%d ",i); 结果是 2 3 5 7 11 13 17 19 23 29 这就是最简单的素数筛选法,对于前面提到的10000000内的素数,用这个筛选法可以大大的降低时间复杂度。把一个只见黑屏的算法 优化到立竿见影,一下就得到结果。关于这个算法的时间复杂度,我不会描述,没看到过类似的记载。只知道算法书上如是说:前几年比 较好的算法的复杂度为o(n),空间复杂度为o(n^(1/2)/logn).另外还有时间复杂度为o(n/logn),但空间复杂度为O(n/(lognloglogn))的算法。 我水平有限啦,自己分析不来。最有说服力的就是自己上机试一试。下面给出这两个算法的程序: //最普通的方法: #include<stdio.h> #include<math.h>
前言 重写equals和hashCode方法,可加深对hash算法的理解 为什么重写 重写equals方法为了判断对象是否在逻辑上为同一个对象 重写hashCode方法是为了提高hash效率, 并且和equals保持一致 什么场景需要重写 场景: 用户User对象去重 比如有对象User, 其中包含用户id和用户名称, 需要对大量用户进行去重操作, 这时就需要重写User对象的hashCode和equals方法, 并使用set容器去重。 如何重写 代码如下 import java.util.Objects
今天在做一个算法题的时候遇到一个需要求质数的情况,但是本人比较菜只会暴力做法,所以在此记录学习一下质数筛选除了暴力以外的其它做法!
“有限域算数运算”介绍了有限域的基本概念,进一步阐述了椭圆曲线系统的三种经典有限域(质数域,二元域和扩展域)以及其相应的算数运算方法(加法,减法,乘法和求逆运算)。本文重点阐述在质数域 F p F_p Fp中的算数运算执行算法,包括任意质数p的算法,当模数p具有特性形式时,该算法揭示约化步骤的执行效率能够获得提升;还提出了针对NIST质数的高效约化算法,对诸如 p = 2 192 − 2 64 − 1 p=2^{192}-2^{64}-1 p=2192−264−1形式的质数具有适用性。 以上算法适合软件执行:假设工作台通常为64位或32位,算法运行在 W W W-位(W-位,W是8的倍数)框架基础上。低位或更廉价的组件的W值更小,比如嵌入式系统一般是16位,智能卡一般是8位。W-位的位数词U从0到W-1编号,个位数约定为位0。 F p F_p Fp的元素是从0到 p − 1 p-1 p−1的整数。用 m = [ log [ 2 ] p ] m=[\log [2]{p} ] m=[log[2]p]表示p的位数, t = [ m / W ] t=[m/W] t=[m/W]表示字节长度。下图展示的例子是用二进制存储单元 A = ( A [ t − 1 ] , . . . , A [ 2 ] , A [ 1 ] , A [ 0 ] ) A=(A[t-1],…,A[2],A[1],A[0]) A=(A[t−1],...,A[2],A[1],A[0])表示字节长度t的元素a。其中,整数a表示为: a = 2 ( t − 1 ) W A [ t − 1 ] + . . . + 2 2 W A [ 2 ] + 2 W A [ 1 ] + A [ 0 ] a=2^{(t-1)^W}A[t-1]+…+2^{2W}A[2]+2^WA[1]+A[0] a=2(t−1)WA[t−1]+...+22WA[2]+2WA[1]+A[0]。
给定两个整数 L 和 R ,找到闭区间 [L, R] 范围内,计算置位位数为质数的整数个数。
感觉明天就可以结束了。。。。加油!!!!!!!学校什么时候解封,要疯了。。。。。。。
作者:小傅哥 博客:https://bugstack.cn ❝沉淀、分享、成长,让自己和他人都能有所收获!😜 ❞ 一、什么是素数 二、对称加密和非对称加密 三、算法公式推导 四、关于RSA算法 五、实现RSA算法 1. 互为质数的p、q 2. 乘积n 3. 欧拉公式 φ(n) 4. 选取公钥e 5. 选取私钥d 6. 加密 7. 解密 8. 测试 六、RSA数学原理 1. 模运算 2. 最大公约数 3. 线性同余方程 4. 中国余数定理 5. 费马小定理 6. 算法证明 七、常见面试题 ----
RSA算法是一种广泛使用的公钥加密算法,它的名称来源于其创始人Ron Rivest、Adi Shamir和Leonard Adleman的首字母缩写。该算法于1977年首次被提出,并迅速成为公钥密码学的标准之一。RSA算法的安全性基于大数分解和离散对数等数学难题,使得它在保护数据隐私和完整性方面具有很高的可靠性。
领取专属 10元无门槛券
手把手带您无忧上云