首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nucleic Acids Res. | 一种灵活的、可解释的、精确的插补未测量基因表达的方法

    今天给大家介绍密歇根州立大学Arjun Krishnan教授等人发表在Nucleic Acids Research上的一篇文章 “A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes”。虽然生物学领域中有超过200万个公开可用的人类微阵列基因表达谱,但这些谱是通过各种平台进行测量的,每个平台都覆盖一组预先定义的、有限的基因。因此,重新分析和整合这一海量数据收集的关键是通过插补未测量基因的表达,在部分测量的微阵列样品中重组整个转录组的方法。目前最先进的插补方法是针对特定平台的样本进行定制的,并依赖于基因-基因关系,不考虑目标样本的生物学背景。本文表明,为每个新的目标样本实时构建的捕获样本-样本关系 (称为样本弹性) 的稀疏回归模型,优于基于固定基因关系的模型。基于三种机器学习算法 (LASSO、k近邻和深度神经网络)、两个基因子集 (GPL96-570和LINCS) 和多个插补任务 (微阵列/RNA-seq数据集内和跨数据集) 的广泛评估表明SampleLASSO是最精确的模型。此外,本文证明了该方法的生物学可解释性:为了插补来自特定组织的一个目标样本,SampleLASSO自动利用了来自同一组织的训练样本。因此,SampleLASSO是一种简单,但强大而灵活的协调大规模基因表达数据的方法。

    01

    Genome Biology | DeepImpute:一种基于深度神经网络来插补单细胞RNA测序数据的方法

    今天给大家介绍密歇根大学的Lana X. Garmire教授等人发表在Genome Biology上的一篇文章 “DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data” 。单细胞RNA测序 (scRNA-seq) 为同时研究数万个单细胞的基因表达提供了新的机遇。本文提出了DeepImpute,一个基于深度神经网络的插补算法,它使用dropout层和损失函数来学习数据中的分布模式从而精确地插补缺失数据。总的来说,通过均方误差或皮尔逊相关系数衡量,DeepImpute比其他六种公开可用的插补方法精度更高。实验表明,DeepImpute是一个准确、快速、可扩展的插补工具,适合处理数量不断增长的scRNA-seq数据。

    01

    Nucleic Acids Res. | scIMC: 单细胞RNA测序数据插补方法的基准比较和可视化分析平台

    今天给大家介绍山东大学魏乐义教授与日本东京大学中井谦太教授合作发表在Nucleic Acids Research上的一篇文章 “scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods”。目前在单细胞RNA测序(scRNA-seq)领域最主要的挑战是技术缺陷导致的“dropout”事件,其极大影响了下游任务分析,因此迫切需要有效的方法优化单细胞RNA测序数据。本文从以下四个方面对现有scRNA-seq数据插补方法进行系统的研究与比较:(1)恢复真实基因表达分布,(2)细胞聚类分析,(3)基因差异性表达分析,(4)重建细胞轨迹。研究表明,基于深度学习的方法通常比基于模型的方法表现出更好的整体性能,显示出深度学习在scRNA-seq数据插补方面的强大能力。此外,针对帮助没有计算机背景的研究人员方便实现插补方法以及结果的可视化分析,本文研究开发了在线分析平台scIMC,集成了多种现有方法以及常见的下游分析任务,能够方便用户针对不同的数据选择合适的数据插补方法进行分析与比较。

    01

    Genome Biology | VIPER:在单细胞RNA测序中为精确的基因表达恢复进行保留变异的插补

    今天给大家介绍密歇根大学的Zhou Xiang教授等人发表在Genome Biology上的一篇文章 “VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies”。本文开发了一种方法,VIPER,在单细胞RNA测序研究中插补零值,以促进在单细胞水平上准确的转录组测量的实现。VIPER基于非负稀疏回归模型,并能够逐步推断一组稀疏的局部邻域细胞,这些细胞最能有效预测用于插补的细胞的表达水平。VIPER的一个关键特征是它保存基因表达变异的细胞的能力。几个精心设计的基于真实数据的分析实验说明了VIPER的优点。

    01

    Adv. Sci. | 分布无关的深度学习实现准确的单细胞数据恢复和转录调控解释

    本文介绍吉林大学李向涛教授课题组发表在Advanced Science的研究成果,题为“Distribution-Agnostic Deep Learning Enables Accurate Single-Cell Data Recovery and Transcriptional Regulation Interpretation”。单细胞转录组测序(scRNA-seq)是一种在单细胞水平上研究基因表达的可靠方法,但是准确的量化转录信息通常受到有限的mRNA捕获的阻碍,从而导致许多缺失的表达值。现有的插补方法依赖于严格的数据假设,限制其更广泛的应用,从而导致有偏的信号恢复。为了应对这一挑战,作者提出了一个分布无关的深度学习模型,可准确恢复缺失的基因表达。该模型基于最优传输理论,通过正则化细胞嵌入空间来应对单细胞转录组数据的复杂分布。此外,还提出了表达一致性模块引入bulk RNA-seq数据指导缺失基因恢复。

    01

    Scientific Reports | AutoImpute:基于自编码器的单细胞RNA测序数据的插补

    今天给大家介绍印度德里Indraprastha信息技术学院的Debarka Sengupta教授等人发表在Scientific Reports上的一篇文章 “AutoImpute: Autoencoder based imputation of single-cell RNA-seq data” 。单细胞RNA测序 (scRNA-seq) 技术的出现,使我们能够以单细胞分辨率测量数千个基因的表达水平。然而,单个细胞中起始RNA的数量不足会导致显著的“dropout”事件 (被错误判断为零的表达值),在表达矩阵中引入大量的零计数。为了解决这一问题,本文提出了一种基于自编码器的稀疏基因表达矩阵的插补方法。AutoImpute,它学习输入的scRNA-seq数据的固有分布,并相应地插补缺失值,对生物沉默基因 (真实表达的零值) 进行最小的修改。在真实的scRNA-seq数据集上进行测试时,AutoImpute在基于下采样数据的表达恢复、细胞聚类精度、方差稳定和细胞类型可分离性方面表现出竞争性。

    02

    单细胞转录组可以这样简单计算相关性吗

    各种数据挖掘文章本质上都是要把目标基因集缩小,比如表达量矩阵通常是2万多个蛋白编码基因,不管是表达芯片还是RNA-seq测序的,采用何种程度的差异分析,最后都还有成百上千个目标基因。如果是临床队列,通常是会跟生存分析进行交集,或者多个数据集差异结果的交集,比如:多个数据集整合神器-RobustRankAggreg包 ,这样的基因集就是100个以内的数量了,但是仍然有缩小的空间,比如lasso等统计学算法,最后搞成10个左右的基因组成signature即可顺利发表。其实还有另外一个策略方向,有点类似于人工选择啦,通常是可以往热点靠,比如肿瘤免疫,相当于你不需要全部的两万多个基因的表达量矩阵进行后续分析,仅仅是拿着几千个免疫相关基因的表达矩阵即可。最近比较热门的有:自噬基因,铁死亡,EMT基因,核受体基因家族,代谢基因。还有一个最搞笑的是m6a基因的策略,完全是无厘头的基因集搞小,纯粹是为了搞小而搞小。目前单细胞转录组大行其道,所以很多人喜欢使用公共的单细胞转录组数据集来缩小基因范围。学员在微信交流群分享了一个2024年5月的单细胞数据挖掘文章,标题是:《Single-cell combined with transcriptome sequencing to explore the molecular mechanism of cell communication in idiopathic pulmonary fibrosis》,研究者们重新分析了 GSE122960 这个单细胞转录组数据集,主要是第一层次降维聚类分群后,提取了巨噬细胞的特异性基因,然后走了随机森林生存分析算法,得到了 five most related key genes (CD163, IFITM2, IGSF6, S100A14 and SOD3). 有了目标的5个基因就可以很方便的各种简单分析来强调他们的生物学意义。比如去跟PDCD1基因看相关性:

    01

    Nature Communications | 一种适用于单细胞RNA测序数据的准确可靠的插补方法

    今天给大家介绍美国加利福尼亚大学Jingyi Jessica Li教授等人发表在Nature Communications上的一篇文章 “An accurate and robust imputation method scImpute for single-cell RNA-seq data” 。新兴的单细胞RNA测序 (scRNA-seq) 技术能够在单细胞水平研究转录组学情况。但是ScRNA-seq数据分析由于过多的零计数而变得复杂,也就是所谓的“dropout”事件,这是由于单个细胞内测序的mRNA量过少。 本文提出了scImpute,一种统计方法,可以准确而可靠地估算出scRNA-seq数据中的“dropout”。 scImpute自动识别可能的“dropout”,并且仅对这些值执行插补,而不会对其余数据引入新的偏差。scImpute还可以检测离群细胞并将其排除在插补之外。根据在模拟的和真实的人类和小鼠scRNA-seq数据中进行评估,表明scImpute是一种有效的工具,可识别可能的“dropout”,增强细胞亚群的聚集,提高差异表达分析的准确性,并有助于基因表达动力学的研究。

    03

    Nature Methods |单细胞转录组的深度生成建模

    今天给大家介绍加利福尼亚大学的Nir Yosef教授等人发表在Nature Methods上的一篇文章 “Deep generative modeling for single-cell transcriptomics” 。单细胞转录组测量可以揭示未开发的生物多样性,但它们受到技术噪音和偏差的影响,必须建模以解释下游分析中产生的不确定性。本文介绍了single-cell variational inference (scVI),一个现成的可扩展框架,用于概率表示和分析单细胞中的基因表达。scVI使用随机优化和深度神经网络来聚合相似细胞和基因的信息,并近似观察到的表达值的分布,同时考虑批次效应和有限的灵敏度。本文将scVI用于一系列基本的分析任务,包括批处理校正、可视化、聚类和差异性表达,并为每个任务实现了较高的精度。

    01
    领券