大家好,今天不写代码,改为教大家画画,不过不是教素描或者油画之类的,而是画流程图。 在画流程图之前,先简单介绍下算法的概念,理解即可。然后通过画流程图来复习下前面学过的几种程序控制结构。...根据这些方法和步骤来编写计算机程序代码,这些具体的步骤和方法就是解决问题的算法。 根据算法,选择一种编程语言来编写可以完成任务的代码,就是编制程序。...对于复杂的应用程序,我们在开始编写代码之前,都应先设计起算法。...二、流 程 图 流程图就是一种描述算法的方式,相比于纯文字的描述,可以把解决问题的思路以更清晰、直观的方式展现出来,有助于更好的设计程序过程。...那么首先来看一下常用的流程图符号(在excel中“插入”选项卡,插入“形状”,流程图部分都有下列常用的符号。) ? 下面就通过流程图来复习下学习过的控制程序结构。
最小二乘法,说白了其实就是解决线性回归问题的一个算法。这个算法最早是由高斯和勒让德分别独立发现的,也是当今十分常见的线性拟合算法,并不复杂。...我们常用的最小二乘法有两种,一种是普通方程表示的简单线性拟合问题,另一种是矩阵表示的高维度的线性拟合问题。...普通最小二乘法 他解决的基本问题其实就是给定一些数对 ,让你求出参数 ,使得直线 能够最好的拟合这个数据集,也就是使得他的平方损失函数取到最小值,即 Q=\underset{i=1}{\overset...矩阵最小二乘法 用矩阵表示的最小二乘法则更加方便,能够用非常简单的矩阵形式进行计算,而且能拟合多维度的线性方程。
BP网络: BP网络是指连接权调整采用了反向传播(Back Propagation)学习算法的前馈网络。...由上可知BP网络是通过BP算法来修正误差的前馈神经网络 反馈型神经网络: 取连续或离散变量,考虑输出与输入之间在时间上的延迟,需要用动态方程来描述系统的模型。...前馈型神经网络的学习主要采用误差修正法(如BP算法),计算过程一般比较慢,收敛速度也比较慢; 而反馈型神经网络主要采用Hebb学习规则,一般情况下计算的收敛速度很快。
概念:最小二乘法是一种熟悉而优化的方法。主要是通过最小化误差的平方以及最合适数据的匹配函数。...作用:(1)利用最小二乘法可以得到位置数据(这些数据与实际数据之间误差平方和最小)(2)也可以用来曲线拟合 实例讲解:有一组数据(1,6),(3,5),(5,7),(6,12),要找出一条与这几个点最为匹配的直线...+ Bx 有如下方程: 6 = A + B 5 = A + 3B 7 = A + 5B 12 = A + 6B 很明显上面方程是超定线性方程组,要使左边和右边尽可能相等;采用最小二乘法
] y = points[i, 1] total_cost += ( y - w * x - b ) ** 2 return total_cost/M4.定义算法拟合函数
前言:主要介绍了从最小二乘法到 概念 顾名思义,线性模型就是可以用线性组合进行预测的函数,如图: image.png 公式如下: image.png image.png 误差是独立同分布的...实际问题中,很多随机现象可以看做众多因素的独立影响的综合反应,往往服从正态分布 写出损失函数: image.png 求解: image.png 求得的杰刚好和线性代数中的解相同 最小二乘法...用投影矩阵可以解决线代中方程组无解的方法就是最小二乘法,其解和上述解一样 image.png 例子:用最小二乘法预测家用功率和电流之间的关系 数据来源:http://archive.ics.uci.edu...之后每次运行的随机数不会改变 x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=0) #转化为矩阵形式,进行最小二乘法运算
用这个方程来描述不同变量之间的关系, 而这个关系又无法做到想像函数关系那样准确, 因为即使你重复全部控制条件,结果也还有区别, 这时通过让回归方程计算值和试验点结果间差值的平方和最小来建立 回归方程的办法就是最小二乘法...首先普通最小二乘法是作为回归来使用,将预测值和真实值去比较,是这个误差函数最小,至于为什么叫二乘,因为这里取得是预测值和真实值的平方。...普通最小二乘法经常会引起欠拟合,因为普通最小二乘法将所有的序列值设置为相同的权重;但是对于实际中来说,一个时间序列,最近发生的应该比先前发生的更加重要,所以我们应该将最近发生的赋予更大的权重,先前发生的赋予小一点的权重...,这种就变成了加权最小二乘法。...对于普通最小二乘法,因为种种原因(原因以后分析。。)
周志华机器学习BP改进 试设计一个算法,能通过动态调整学习率显著提升收敛速度,编程实现该算法,并选择两个UCI数据集与标准的BP算法进行实验比较。...1.方法设计 传统的BP算法改进主要有两类: – 启发式算法:如附加动量法,自适应算法 – 数值优化法:如共轭梯度法、牛顿迭代法、Levenberg-Marquardt算法 (1)附加动量项...标准BP算法的参数更新项为: Δω(t)=ηg(t) Δ ω ( t ) = η g ( t ) \Delta \omega(t)=\eta g(t) 式中Δω(t)是第t次迭代的参数调整量,η为学习率...(3)算法总结 将上述两种方法结合起来,形成动态自适应学习率的BP改进算法: 从上图及书中内容可知,输出层与隐层的梯度项不同,故而对应不同的学习率 η_1 和 η_2,算法的修改主要是第
最小二乘法 “损失函数”是如何设计出来的?...直观理解“最小二乘法”和“极大似然估计法” - 哔哩哔哩 (bilibili.com) 1.最小二乘法 求模型的结果与真实值的差距(或者说是损失大小) \displaystyle\sum{i=1}^n|...\hat y_i-y_i|,为了方便求导(梯度下降),我们可以将该算法设计成min\displaystyle\sum{i=1}^n\frac{1}{2}(\hat y_i-y_i)^2 2.极大似然函数
最小二乘法概述 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。...利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。...(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。...3.最小二乘法的改进 最小二乘法由于是最小化均方差,所以它考虑了每个样本的贡献,也就是每个样本具有相同的权重;由于它采用距离作为度量,使得他对噪声比较敏感(最小二乘法假设噪声服从高斯分布),即使得他它对异常点比较敏感...plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False ''' 高斯列主消元算法
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中,而法国科学家勒让德于1806年独立发现“最小二乘法”,但因不为世人所知而默默无闻。两人曾为谁最早创立最小二乘法原理发生争执。 ...1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,见高斯-马尔可夫定理。 ...最小二乘法在机器学习中被用来 3....以上就是我们高中对于最小二乘法的最初认知. 这个求解的过程,我们称之为最小二乘法,而求解的这条直线,我们称之为线性回归,线性回归用来近似的预测数据的真是情况....大学关于最小二乘法 基于上面的那个问题,我们大学有没有更好的一点的求解方式 ? 4.1 大学对于最小二乘法的概括: 找到那样一条函数曲线使得观测值的残差平方之和最小.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内...
最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。...1.最小二乘法的原理与要解决的问题 最小二乘法是由勒让德在19世纪发现的,原理的一般形式很简单,当然发现的过程是非常艰难的。...3.最小二乘法的矩阵法解法 矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。 ...4.最小二乘法的局限性和适用场景 从上面可以看出,最小二乘法适用简洁高效,比梯度下降这样的迭代法似乎方便很多。但是这里我们就聊聊最小二乘法的局限性。 ...首先,最小二乘法需要计算\(\mathbf{X^{T}X}\)的逆矩阵,有可能它的逆矩阵不存在,这样就没有办法直接用最小二乘法了,此时梯度下降法仍然可以使用。
最小二乘法公式是一个数学的公式,在数学上称为,不仅仅包括还包括矩阵的最小二乘法。线性最小二乘法公式为a=y--b*x-。 矩阵的最小二乘法常用于测量数据处理的平差公式中,VTPV=min。...最小二乘法公式: 各项的推导过程 设拟合直线的公式为 , 其中:拟合直线的斜率为: ;计算出斜率后,根据 和已经确定的斜率k,利求出截距b。...应用课题一 最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成时的经验公式...用这种方法确定, 的方法称为最小二乘法....最小二乘法在数学上称为曲线拟合, 请使用拟合函数“Fit”重新计算 与 的值, 并与先前的结果作一比较.
今天聊最小二乘法的实现。 都知道线性回归模型要求解权重向量w,最传统的做法就是使用最小二乘法。...根据在scikit-learn的文档,模型sklearn.linear_model.LinearRegression,使用的就是最小二乘法(least squares ): 可是,最小二乘法在哪实现呢...不过,要找最小二乘法,首先我们得要知道她长什么样。 这个问题有点复杂。准确来说,最小二乘法是一种解法,用来求当均方误差最小时,权重向量w的闭式解。...好在我们知道,最小二乘法是线性回归的优化方法,只是在模型的训练阶段时候登场。 对应到Api当中,就是最小二乘法的fit方法了,在467行: 不过,代码还是很长...... 没关系,还有办法。...因为,这里的lstsq,就是numpy提供的最小二乘法计算工具: 看来scikit-learn选择的是直接调用现成工具,不打算重复造轮子了。
最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。...1.最小二乘法的原理与要解决的问题 最小二乘法是由勒让德在19世纪发现的,原理的一般形式很简单,当然发现的过程是非常艰难的。...我们的目标函数为: 用最小二乘法做什么呢,使最小,求出使最小时的和,这样拟合函数就得出了。 那么,最小二乘法怎么才能使最小呢?...4.最小二乘法的局限性和适用场景 从上面可以看出,最小二乘法适用简洁高效,比梯度下降这样的迭代法似乎方便很多。但是这里我们就聊聊最小二乘法的局限性。...那这个n到底多大就不适合最小二乘法呢?如果你没有很多的分布式大数据计算资源,建议超过10000个特征就用迭代法吧。或者通过主成分分析降低特征的维度后再用最小二乘法。
IDEA: IDEA 默认就有一个流程图绘制工具,当在 IDEA 中打开一个流程图的 XML 文件的时候,可以选择 Designer,就可以通过可视化的方式去查看这个流程图,默认的不推荐。...其他的绘制工具: flowable-ui 这是官方提供的一个 flowable 的工具,里边有很多功能,包括画流程图。...如下图是官方提供的一个流程图: 我们使用这个插件来绘制一下这个流程图先上个手: 创建项目略过,在 resources 文件夹当中鼠标右键新建一个 BPMN 文件,然后就可以绘制流程图了。...在 BPMN 文件中,鼠标右键,选择 View BPMN(Flowble) Diagram,然后就可以绘制流程图了: 点击画布中间,会出现一些全局的属性,如下图: 这个就是描述一下我们的流程图是干嘛的...Service Task: 服务任务,用于执行一些业务逻辑,例如,发送邮件,发送短信等等 修正一下之前的流程图当中的问题,并解析一下这个流程图的XML,解析XML我会对流程的各个部分编写注释,然后我会将最终的
最小二乘法除用于线性回归外,还有很多应用场景。 如图所示,现在有一系列点 假设两个标量 和 存在线性关系。即 。使得尽量多的点,靠近该直线。 令 表示点 到直线的垂直偏差。...最小二乘法通过求 来求 和 ,也就是所有的点的垂直偏差尽可能的小。 最小二乘法在一些迭代算法中用来判断收敛. 矩阵对角化 若 为矩阵非主对角元素的平方和。
cdots \quad y _ { n } ] ^ { T } \quad y \in \mathbb{R} 来预测线性模型中的参数 \bf{\omega},使得模型尽可能准确输出预测值 线性回归 / 最小二乘法
课堂练习 在直线 y = 5x + 3 附近生成服从正态分布的随机点(0,10) 50个,作为拟合直线的样本点 利用最小二乘法(least square)原理,自定义拟合实现这些随机点的一元线性拟合方程...即得到模拟的50个点 定义mean x,mean y 初始化Sum x,Sum y for i=1……n, sum x,y 根据公式求解w,b 思考题 如何实现高阶多项式拟合,如 image.png 最小二乘法公式推导
领取专属 10元无门槛券
手把手带您无忧上云