前言 EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题。...但是受到时间复杂度的限制,这种算法常常有TLE的风险 思想 还记得我们在介绍最大流的时候提到的求解思路么? 对一张网络流图,每次找出它的最小的残量(能增广的量),对其进行增广。...没错,EK算法就是利用这种思想来解决问题的 实现 EK算法在实现时,需要对整张图遍历一边。 那我们如何进行遍历呢?BFS还是DFS?...} int N,M,S,T; int path[MAXN];//经过的路径 int A[MAXN];//S到该节点的最小流量 inline int EK() { int ans=0;//最大流...通过上图不难看出,这种算法的性能还算是不错, 不过你可以到这里提交一下就知道这种算法究竟有多快(man)了 可以证明,这种算法的时间复杂度为 大体证一下: 我们最坏情况下每次只增广一条边,则需要增广
这两本是之前有朋友在评论里推荐的: 《牧羊少年奇幻之旅》 《大流感:最致命瘟疫的史诗》 画外音:坚持一件事很难,但读书,真的有用。 《牧羊少年奇幻之旅》 小时候,有人问我们的梦想是什么?...15分钟,扫码听书《牧羊少年奇幻之旅》 《大流感:最致命瘟疫的史诗》 由历史学家约翰·M·巴里带来的全面回顾1918年大流感的这本书,被美国科学院评为2005年度最佳科学/医学类图书。...在以冷静客观的笔调描述了大流感的社会图景,以深入浅出的逻辑解释了病毒与人类之间的战争关系之后,《大流感:最致命瘟疫的史诗》中更加宝贵的对瘟疫留给人类的遗产进行了深刻反思,展现出了理性的光辉。...所以1918年大流感的最后一条教训,即那些身居要职的权威人士必须降低可能离间整个社会的恐慌,可谓知易行难。 这是流感,仅仅只是流感。...让我们一起通过《大流感:最致命瘟疫的史诗》来反思如何应对病毒。 15分钟,扫码听书《大流感,最致命瘟疫的史诗》 不知不觉,坚持读书3年了,希望我们一起,养成自律的习惯。
前置知识 网络最大流入门 前言 Dinic在信息学奥赛中是一种最常用的求网络最大流的算法。 它凭借着思路直观,代码难度小,性能优越等优势,深受广大oier青睐 思想 Dinic算法属于增广路算法。...它的核心思想是:对于每一个点,对其所连的边进行增广,在增广的时候,每次增广“极大流” 这里有别于EK算法,EK算法是从边入手,而Dinic算法是从点入手 在增广的时候,对于一个点连出去的边都尝试进行增广...,即多路增广 Dinic算法还引入了分层图这一概念,即对于$i$号节点,用dis(i)表示它到源点的距离,并规定,一条边能够被增广,当且仅当它连接的两个点$u,v$满足:dis(v)=dis(u)+1,...Dinic算法的性能在比赛中表现的非常优越。...按照集训队大佬ly的说法,我们可以认为Dinic算法的时间复杂度是线性的(比某标号算法不知道高到哪里去了) 代码 题目链接 #include #include #include
实现功能:同Dinic网络最大流 1 这个新的想法源于Dinic费用流算法。。。...在费用流算法里面,每次处理一条最短路,是通过spfa的过程中就记录下来,然后顺藤摸瓜处理一路 于是在这个里面我的最大流也采用这种模式,这样子有效避免的递归,防止了爆栈么么哒 1 type 2
实现功能:同sap网络最大流 今天第一次学Dinic,感觉最大的特点就是——相当的白话,相当的容易懂,而且丝毫不影响复杂度,顶多也就是代码长个几行 主要原理就是每次用spfa以O(n)的时间复杂度预处理出层次图
不说废话了,直接正题 首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和 EK算法的核心 反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量...而找到delta后,则使最大流值加上delta,更新为当前的最大流值。 ?...这么一个图,求源点1,到汇点4的最大流 由于我是通过模版真正理解ek的含义,所以先上代码,通过分析代码,来详细叙述ek算法 1 #include 2 #include <queue...但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。 那么我们刚刚的算法问题在哪里呢?...这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。 至此,最大流Edmond-Karp算法介绍完毕。
实现功能:输入M,N,S,T;接下来M行输入M条弧的信息(包括起点,终点,流量,单位费用);实现功能是求出以S为源点,T为汇点的网络最大流的最小费用 其实相当的像Dinic最大流呐= = 还是spfa处理出最短路径...这次是最短路径,所以时空复杂度将有所提高,害得我都开循环队列了TT),然后顺着最短路径顺藤摸瓜找回去,求出流大小和最小的费用,然后,没有然后了,程序还是一样的好懂么么哒(HansBug:感觉Dinic算法真心超级喜感...then swap(j,k); 89 add(j,k+n,1,l); 90 end; 91 flow:=0;ans:=0; //flow表示最大流
这块主要就是要理解,什么是maxflow,以及节点最后分割的类型是SOURCE还是SINK分别意味着什么 graphcuts算法时间复杂度与其他最大流算法的比较: ?
实现功能:同前 程序还是一如既往的优美,虽然比起邻接矩阵的稍稍长了那么些,不过没关系这是必然,但更重要的一个必然是——速度将是一个质的飞跃^_^(这里面的poi...
简介 最大流算法主要分为两大类,一类为增广路算法,一类为预流推进算法。最大流算法解决的是在有向网路图 中计算从源点 到汇点 的最大流量问题,以及最小割容量问题。...最小割最大流定理 最大流的值等于 的最小割容量。 2. 增广路算法 剩余容量 剩余容量 表示边 的容量与流量之差。...; } } } // 没有找到增广路 return false; } // 求最大流...在稀疏图上,Dinic 算法和 EK 算法相差不大,但在稠密图上(二分匹配之类的)Dinic的优势很明显。...ISAP 算法即为 SAP 算法的优化版本,在 SAP 算法基础上加上了当前弧优化和分层优化(即 DFS 后不需要重跑 BFS 来进行分层)。
实现功能:同最大流 1 这里面主要是把前面的邻接矩阵改成了邻接表,相比之下速度大大提高——本人实测,当M=1000000 N=10000 时,暂且不考虑邻接矩阵会不会MLE,新的程序速度快了很多倍(我们家这个很弱的电脑上耗时
实现功能:同之前 可以看见的是这次的程序优美了许多,代码简短了一倍还多,可是速度却是和原来的邻接表一个级别的(在Codevs上面草地排水那题的运行时间比较,但是...
吐槽 这个算法。。 怎么说........ 学来也就是装装13吧。。。。...长得比EK丑 跑的比EK慢 写着比EK难 思想 大家先来猜一下这个算法的思想吧:joy: 看看人家的名字——最高标号预留推进 多么高端大气上档次2333333咳咳 从它的名字中我们可以看出,它的核心思想是...那么推到最后,我们就可以得到到达汇点的最大流量 不过可能会出现一种情况,就是A送流量给B,B觉得不好意思不想要,于是又推给A,A非常热情便又推给B……直到推到TLE为止。。那怎么解决这种情况呢?...另外还有一个比较显然的优化,如果一个高度i是不存在的,即图中没有高度为i的点,那么从比高的点一定不会走到汇点T,因为根据我们的限制条件,必须要经过高度为i的点,于是这些点就没有用了 代码 题目在这儿 不是我说,这个算法真的是死慢死慢的
总第77篇 本篇介绍机器学习众多算法里面最基础也是最“懒惰”的算法——KNN(k-nearest neighbor)。你知道为什么是最懒的吗?...该算法常用来解决分类问题,具体的算法原理就是先找到与待分类值A距离最近的K个值,然后判断这K个值中大部分都属于哪一类,那么待分类值A就属于哪一类。...02|算法三要素: 通过该算法的原理,我们可以把该算法分解为3部分,第一部分就是要决定K值,也就是要找他周围的几个值;第二部分是距离的计算,即找出距离他最近的K个值;第三部分是分类规则的确定,就是以哪种标准去评判他是哪一类...训练算法:KNN没有这一步,这也是为何被称为最懒算法的原因。 测试算法:将提供的数据利用交叉验证的方式进行算法的测试。 使用算法:将测试得到的准确率较高的算法直接应用到实际中。...5、应用算法: 通过修改inX的值,就可以直接得出该电影的类型。
解释一下GBDT算法的过程 1.1 Boosting思想 1.2 GBDT原来是这么回事 3. GBDT的优点和局限性有哪些? 3.1 优点 3.2 局限性 4....解释一下GBDT算法的过程 GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是Boosting的思想。.../ML-NLP/Machine Learning/3.2 GBDT 代码补充参考for——小白: Python科学计算——Numpy.genfromtxt pd.DataFrame()函数解析(最清晰的解释...) iloc的用法(最简单) scikit-learn 梯度提升树(GBDT)调参小结(包含所有参数详细介绍) 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
实现功能:首行输入N,M,S,T,代表这张图N个点,M条边,源点为S,汇点为T;接下来T行输入个边的出发点、终点和权值;输出最大流 原理:sap网络流算法(详见百度百科,个人觉得这个模板已经不错了,虽然本人暂时还未考虑引入邻接表进行优化
而我们今天要讲的就是网络流里的一种常见问题——最大流问题。...求最大流的标号算法最早由福特和福克逊与与1956年提出,20世纪50年代福特(Ford)、(Fulkerson)建立的“网络流理论”,是网络应用的重要组成成分。...网络流图是一张只有一个源点和汇点的有向图,而最大流就是求源点到汇点间的最大水流量,下图的问题就是一个最基本,经典的最大流问题 ?...好了,弄懂了一些定义,接下来就可以介绍著名的Ford-Fulkerson算法了。 ?...则此时源点的汇出量即为所求的最大流。 ? ? ? ? ?
KNN是一种分类算法,其全称为k-nearest neighbors, 所以也叫作K近邻算法。该算法是一种监督学习的算法,具体可以分为以下几个步骤 1....第一步,载入数据,因为是监督学习算法,所以要求输入数据中必须提供样本对应的分类信息 2. 第二步,指定K值,为了避免平票,K值一般是奇数 3....在scikit-learn中,使用KNN算法的代码如下 >>> from sklearn.neighbors import KNeighborsClassifier >>> X = [[0], [1],...3) >>> neigh.fit(X, y) KNeighborsClassifier(n_neighbors=3) >>> print(neigh.predict([[1.1]])) [0] KNN算法原理简单
作 者:柳行刚 编 辑:李文臣 1 字符串匹配是经典的KMP算法。下面以字符串"BBC ABCDAB ABCDABCDABDE"为例,查找是否包含串"ABCDABD"?...下面是next数组和匹配算法参照代码。
增加资源供给,比如:更大的网络带宽,使用更高配置的服务器,使用高性能的Web服务器,使用高性能的数据库 请求分流,比如:使用集群,分布式的系统架构 应用优化,比如:使用更高效的编程语言,优化处理业务逻辑的算法...提供多个能提供相同服务的Web服务器,以实现负载均衡 仔细规划Web服务器上部署的应用规模 对Web服务器进行集群 4)Web应用层面,常见的手段有: 动态内容静态化 Java开发优化 优化处理业务逻辑的算法
领取专属 10元无门槛券
手把手带您无忧上云