首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据挖掘】数据挖掘 特异群组挖掘的框架与应用

    特异群组挖掘在证券金融、医疗保险、智能交通、社会网络和生命科学研究等领域具有重要应用价值。特异群组挖掘与聚类、异常挖掘都属于根据数据对象的相似性来划分数据集的数据挖掘任务,但是,特异群组挖掘在问题定义、算法设计和应用效果方面不同于聚类和异常等挖掘任务。为此,系统地阐述了特异群组挖掘任务,分析了特异群组挖掘任务与聚类、异常等任务之间的差异,给出了特异群组挖掘任务的形式化描述及其基础算法,最后,列举了特异群组挖掘的几个重点应用。 1、引言 数据挖掘技术是数据开发技术的核心[1]。其中,挖掘高价值、低密度的数

    010

    决策智能技术浪潮袭来,数智商业领域如何变革?来听听三位专家怎么说

    机器之心报道 机器之心编辑部 近年来,伴随着广告主的需求变化和相关技术发展,计算经济学理论、博弈论和人工智能技术被越来越多地应用到广告拍卖机制、投放策略中。 决策智能在商业场景中的意义逐渐凸显。用户看到的每一次商品展现、商家的每一次广告出价、平台的每一次流量分配,背后都有庞大且复杂的决策智能做支撑。 这些动作的目标在于优化用户购物体验,让广告投放的决策过程更加智能,同时让广告主、媒体在平台实现长期繁荣。广告主希望在有限的资源投入下最大化营销效果,平台希望能够建立更好的生态。然而流量环境、其他参竞广告形成的竞

    01

    基于分解和重组的分子图的生成方法

    今天为大家介绍的是来自Masatsugu Yamada 和 Mahito Sugiyama的一篇关于分子生成的论文。在药物发现和材料设计中,设计具有所需化学性质的分子结构是一项重要任务。然而,由于候选分子空间的组合爆炸,找到具有优化所需性质的分子仍然是一项具有挑战性的任务。在这里,作者提出了一种全新的基于分解和重组的方法,该方法不包括任何在隐藏空间中的优化,并且生成过程具有高度的可解释性。该方法是一个两步过程:在第一步的分解阶段,对分子数据库应用频繁子图挖掘,以收集较小规模的子图作为分子的构建模块。在第二步的重组阶段,通过强化学习引导搜索理想的构建模块,并将它们组合起来生成新的分子。实验证明,作者方法不仅可以在惩罚性log P和药物相似度这两个标准指标下找到更好的分子,还可以生成显示有效中间分子的药物分子。

    01

    KDD 提前看 | KDD 里的技术实践和突破

    数据挖掘、深度学习以及其他机器学习的模型、算法在过去几年一直保持快速发展,研究人员不断提出了大量优秀的模型、算法等,在实验条件下,模型和算法的准确度、处理速度等性能不断提高。一些模型和算法也被应用于实践中,获得了很好的效果。我们从 2019 年 KDD 的录用论文中选取了几篇重点阐述技术实践和突破的文章进行分析和介绍。结合具体行业的特点,例如在线学习系统原始数据异构性强、医疗行业专业词汇可理解性差、气象数据稳定性差以及在线推荐系统智能化需求提升等,研究人员对经典的模型和算法进行了改进和参数调整,以适应具体的场景、满足应用的需要。

    03

    成年期人类大脑功能网络的重叠模块组织

    已有研究表明,作为人类大脑基本特征的大脑功能模块化组织会随着成年期的发展而发生变化。然而,这些研究假设每个大脑区域都属于一个单一的功能模块,尽管已经有趋同的证据支持人类大脑中功能模块之间存在重叠。为了揭示年龄对重叠功能模块组织的影响,本研究采用了一种重叠模块检测算法,该算法不需要对年龄在18 - 88岁之间的健康队列(N = 570)的静息态fMRI数据进行事先了解。推导出一系列的测量来描述重叠模块结构的特征,以及从每个参与者中识别出的重叠节点集(参与两个或多个模块的大脑区域)。年龄相关回归分析发现,重叠模度和模块相似度呈线性下降趋势。重叠节点数目随年龄增长而增加,但在脑内的增加并不均匀。此外,在整个成年期和每个年龄组内,节点重叠概率始终与功能梯度和灵活性呈正相关。此外,通过相关和中介分析,我们发现年龄对记忆相关认知表现的影响可能与重叠功能模块组织的变化有关。同时,我们的研究结果从大脑功能重叠模块组织的角度揭示了与年龄相关的分离减少,这为研究成年期大脑功能的变化及其对认知表现的影响提供了新的视角。

    02

    科幻里的机器人蜂群被浙大搞出来了!独立思考自主导航,可编队飞行追踪目标,成果登Science子刊封面

    梦晨 发自 凹非寺 量子位 | 公众号 QbitAI 机器人集群自如穿梭密集的竹林,这一幕不是出自电影大片,而是在浙江湖州真实上演。 自然形成的复杂环境对机器人来说是未知的,没有事先测绘。 也没有统一的中央指挥,每一只机器人都在“独立思考”,全靠算法临场反应。 这项来自浙江大学的研究成果登上最新一期Science Robotics封面。 据浙江大学介绍,此前的机器人集群表演大多通过卫星定位和轨迹编码实现,由地面计算机统一控制。 这种模式下,机器人群体一旦失去指挥就会“群龙无首”,不但无法保持队形还可能撞

    04
    领券