一个无向图 G=(V,E),V 是点集,E 是边集。取 V 的一个子集 U,若对于 U 中任意两个点 u 和 v,有边 (u,v)∈E,那么称 U 是 G 的一个完全子图。 U 是一个团当且仅当 U 不被包含在一个更大的完全子图中。
作者:Xiyu Zhang Jiaqi Yang* Shikun Zhang Yanning Zhang
高斯玻色子采样器是光子量子器件,具有解决一些经典系统较难处理问题的能力。 在这里,作者展示了高斯玻色子采样器可用于分子对接,这一药物设计领域的核心问题。作者开发了一种方法,将问题简化为在图中找到最大加权团,并表明高斯玻色子采样器可以编程为对最大团进行采样。为了对我们的方法进行基准测试,我们预测了配体与肿瘤坏死因子 -α 转化酶与其配体的结合模式。
图的表示:G=(V,E), V=(v|v为图中的顶点), E=(e|e为图中的边)
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 条件随机场部分分为两篇讲解,今天这一篇主要简单的讲述什么是条件随机场以及在这之前的概率无向图模型,下一次将从优化算法的层面上论述如何优化这个问题。(理解本篇文章需要对数理统计和图论有一定的基础) 条件随机场(Conditional Random Fields),简称 CRF,是一种判别式的概率图模型。条件随机场是在给定随机变量X条件下,随机变量Y的马尔科夫随机场。原则上,条件随机场的图
定义:若选择一个点说明选择与它相连的所有边,最小顶点覆盖就是选择最少的点来覆盖所有的边。
原文PDF:http://www.tensorinfinity.com/paper_170.html
本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释条件随机场。并且用水浒传为例学习。并且从名著中找了具体应用场景来帮助大家深入这个概念。
网络是由一些紧密相连的节点组成的,并且根据不同节点之间连接的紧密程度,网络也可视为由不同簇组成。簇内的节点之间有着更为紧密的连接,不同簇之间的连接则相对稀疏。这种簇被称为网络中的社区结构(community structure)。
概率图模型(Probabilistic Graphic Model),能够很好地挖掘潜在的内容。
Neo4j研发团队目前发力的重点是人工智能领域,相关生态发展的也更快,说明了类似的图数据库架构在人工智能模型训练上的优势是的确存在的。人工智能模型的最关键指标是准和快,数据系统和计算系统是支持模型训练的两个关键基础设施,其性能是非常重要的。感兴趣的话可以去Neo4j官网查看一下关于未来的发展规划的介绍,挺有意思的!:)
没有花里胡哨的标题,对于基础的算法知识要踏实掌握,分享一份概率图模型学习笔记,一起交流。
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP
在我们想要标注book这个词的时候,是将其标注成名词noun或者动词verb是需要取决于当前词的前一个词的。在这种情境下,前一个词‘a’的词性一个限定词(determiner),所以我们选择将book标注成noun(名词)。对于这样的序列标记任务,以及更一般的结构化预测任务,Linear-chain CRF对标签之间的上下文依赖关系建模是有帮助的。
论文地址:http://arxiv.org/pdf/2010.07906v1.pdf
问题描述: 给定无向图G=(V, E),其中V是非空集合,称为顶点集; E是V中元素构成的无序二元组的集合,称为边集,无向图中的边均是顶点的无序对,无序对常用圆括号“( )”表示。 如果U∈V,且对任意两个顶点u,v∈U有(u, v)∈E,则称U是G的完全子图。 G的完全子图U是G的团当且仅当U不包含在G的更大的完全子图中。G的最大团是指G中所含顶点数最多的团。 如果U∈V且对任意u,v∈U有(u, v)∈E,则称U是G的空子图。G的空子图U是G的独立集当且仅当U不包含在G的更大的空子图中。
前言 基于有需必写的原则,并且当前这个目录下的文章数量为0(都是因为我懒QAQ),作为开局第一篇文章,为初学者的入门文章,自然要把该说明的东西说明清楚,于是。。。我整理了如下这篇文章,作者水平有限,有不足之处还望大家多多指出~~~ 概念 首先,回溯是什么意思?很多初学者都会问这样的一个问题。我们可以举这样一个例子: 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 我们看到了
公司有编号为 1 到 n 的 n 个工程师,给你两个数组 speed 和 efficiency ,其中 speed[i] 和 efficiency[i] 分别代表第 i 位工程师的速度和效率。 请你返回由最多 k 个工程师组成的 最大团队表现值 ,由于答案可能很大,请你返回结果对 10^9 + 7 取余后的结果。
知乎: nghuyong 链接: https://zhuanlan.zhihu.com/p/523164712
人生就是不断的填坑与见坑。 2019年10月8日更新: 老师跟学长说,有很多只是太不常见,让我去掉,不属于基础的范畴,于是做出以下调整。 BFS DFS 最短路 第K短路 最小生成树(森林) 次小生成树 曼哈顿最小生成树 最短路径生成树 欧拉路径 拓扑排序 最小树形图 生成树计数 树的重心 DAG的深度优先搜索标记 图的割点、桥和双连通分支的基本概念 LCA 无向图找桥 无向图连通度(割) 最大团问题 一般图匹配带花树 有向图的强连通分量 Tarjan强连通分量 弦图判断
一般要做到50行以内的程序不用调试、100行以内的二分钟内调试成功。ACM主要是考算法的,主要时间是花在思考算法上,不是花在写程序与debug上。
特异群组挖掘在证券金融、医疗保险、智能交通、社会网络和生命科学研究等领域具有重要应用价值。特异群组挖掘与聚类、异常挖掘都属于根据数据对象的相似性来划分数据集的数据挖掘任务,但是,特异群组挖掘在问题定义、算法设计和应用效果方面不同于聚类和异常等挖掘任务。为此,系统地阐述了特异群组挖掘任务,分析了特异群组挖掘任务与聚类、异常等任务之间的差异,给出了特异群组挖掘任务的形式化描述及其基础算法,最后,列举了特异群组挖掘的几个重点应用。 1、引言 数据挖掘技术是数据开发技术的核心[1]。其中,挖掘高价值、低密度的数
隐马尔可夫模型包含观测,状态和相应的转移,具体的记号不在给出。只给出其性质:其中i是状态而o是观测:
题目链接:https://leetcode-cn.com/problems/maximum-performance-of-a-team/
全球最重要计算机视觉学术会议的大奖,今年颁给了自动驾驶的大模型研究,获奖的还是国内团队。
机器之心报道 机器之心编辑部 近年来,伴随着广告主的需求变化和相关技术发展,计算经济学理论、博弈论和人工智能技术被越来越多地应用到广告拍卖机制、投放策略中。 决策智能在商业场景中的意义逐渐凸显。用户看到的每一次商品展现、商家的每一次广告出价、平台的每一次流量分配,背后都有庞大且复杂的决策智能做支撑。 这些动作的目标在于优化用户购物体验,让广告投放的决策过程更加智能,同时让广告主、媒体在平台实现长期繁荣。广告主希望在有限的资源投入下最大化营销效果,平台希望能够建立更好的生态。然而流量环境、其他参竞广告形成的竞
其实转录组走到现在我总觉得少了点什么东西,后来才想起来是cytospace寻找hub基因
最近学习NLP总是会遇到HMM与CRF模型,一直都是一知半解,这篇博客用户整理一下两个模型的推导与学习笔记。
概率无向图模型(probabilistic undirected graphical model),又称为马尔可夫随机场(Markov random field),是一个可以由无向图表示的联合概率分布。
今天为大家介绍的是来自Masatsugu Yamada 和 Mahito Sugiyama的一篇关于分子生成的论文。在药物发现和材料设计中,设计具有所需化学性质的分子结构是一项重要任务。然而,由于候选分子空间的组合爆炸,找到具有优化所需性质的分子仍然是一项具有挑战性的任务。在这里,作者提出了一种全新的基于分解和重组的方法,该方法不包括任何在隐藏空间中的优化,并且生成过程具有高度的可解释性。该方法是一个两步过程:在第一步的分解阶段,对分子数据库应用频繁子图挖掘,以收集较小规模的子图作为分子的构建模块。在第二步的重组阶段,通过强化学习引导搜索理想的构建模块,并将它们组合起来生成新的分子。实验证明,作者方法不仅可以在惩罚性log P和药物相似度这两个标准指标下找到更好的分子,还可以生成显示有效中间分子的药物分子。
基于图论的点云数据关联方法,通过寻找最稠密的子图来寻找一致关联(内联),通过投影梯度上升的方法保持低时间复杂度,在斯坦福兔子的嘈杂点与990个异常值关联和仅10个内部关联关联关联的实例中,该方法成功地在138毫秒内以100%的精度返回了8个内部关联。
BDD在计算机中的存储时,每个节点对应一个三元组:(变量名称,指针1,指针2) 其中,变量名称指定变量,指针1,指针2分别指定,当前变量取值分别为0或1时,应该指向的节点。
3.假设你想创建一个列表,保存在一段文本中遇到的不同的(唯一的)词以及词的数量,你应该使用哪种数据结构来保存它们,可以最容易地进行随后的数据存取?
总体看三月份的新增漏洞呈上升趋势,新增高危漏洞113个,主要分布在微软、Adobe、Moxa、Videolabs实验室、VISAM、Siemens、Rockwell、D-Link、Linux、Vmware等厂商的主要产品中。
回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
今天我们对概率图模型(Probabilistic Graphical Model,PGM)做一个总结。
数据挖掘、深度学习以及其他机器学习的模型、算法在过去几年一直保持快速发展,研究人员不断提出了大量优秀的模型、算法等,在实验条件下,模型和算法的准确度、处理速度等性能不断提高。一些模型和算法也被应用于实践中,获得了很好的效果。我们从 2019 年 KDD 的录用论文中选取了几篇重点阐述技术实践和突破的文章进行分析和介绍。结合具体行业的特点,例如在线学习系统原始数据异构性强、医疗行业专业词汇可理解性差、气象数据稳定性差以及在线推荐系统智能化需求提升等,研究人员对经典的模型和算法进行了改进和参数调整,以适应具体的场景、满足应用的需要。
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.
1.概念: 将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
https://www.lix.polytechnique.fr/~nikolentzos/files/rw_gnns_neurips20
不管是开发、测试、运维,每个技术人员心理多多少少都有一个成为技术大牛的梦,毕竟“梦想总是要有的,万一实现了呢”!正是对技术梦的追求,促使我们不断地努力和提升自己。
已有研究表明,作为人类大脑基本特征的大脑功能模块化组织会随着成年期的发展而发生变化。然而,这些研究假设每个大脑区域都属于一个单一的功能模块,尽管已经有趋同的证据支持人类大脑中功能模块之间存在重叠。为了揭示年龄对重叠功能模块组织的影响,本研究采用了一种重叠模块检测算法,该算法不需要对年龄在18 - 88岁之间的健康队列(N = 570)的静息态fMRI数据进行事先了解。推导出一系列的测量来描述重叠模块结构的特征,以及从每个参与者中识别出的重叠节点集(参与两个或多个模块的大脑区域)。年龄相关回归分析发现,重叠模度和模块相似度呈线性下降趋势。重叠节点数目随年龄增长而增加,但在脑内的增加并不均匀。此外,在整个成年期和每个年龄组内,节点重叠概率始终与功能梯度和灵活性呈正相关。此外,通过相关和中介分析,我们发现年龄对记忆相关认知表现的影响可能与重叠功能模块组织的变化有关。同时,我们的研究结果从大脑功能重叠模块组织的角度揭示了与年龄相关的分离减少,这为研究成年期大脑功能的变化及其对认知表现的影响提供了新的视角。
公式P是指排列,从N个元素取M个进行排列。 公式C是指组合,从N个元素取M个进行组合,不进行排列。 N-元素的总个数 M参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1
随着岁数的增长,晚上睡不着觉的时候,会问自己一个问题,自己想要成为一个什么样的人。
ChatGPT一出来,一堆搞NLP的立马哭了。为什么?不该问为什么哭,而该问为什么还不哭。
大数据文摘授权转载自AI科技评论 作者:Ailleurs 编辑:陈彩娴 当地时间5月3日,美国国家科学院(National Academy of Sciences)公布了2022年新一批当选的院士名单。120名美国科学家和30名外籍科学家因其在原创性研究方面做出的杰出贡献而入选。到目前为止,美国国家科学院一共已有2512名院士、517名外籍院士。 在此次当选名单中,华人科学家崔屹、金亦石、马中珮(Ma, Chung-Pei)、张启敬(Zhang Qijing)、丁邦容(Ting Jenny)当选美国国家科学
作者|Ailleurs 编辑|陈彩娴 当地时间5月3日,美国国家科学院(National Academy of Sciences)公布了2022年新一批当选的院士名单。120名美国科学家和30名外籍科学家因其在原创性研究方面做出的杰出贡献而入选。到目前为止,美国国家科学院一共已有2512名院士、517名外籍院士。 在此次当选名单中,华人科学家崔屹、金亦石、马中珮(Ma, Chung-Pei)、张启敬(Zhang Qijing)、丁邦容(Ting Jenny)当选美国国家科学院院士,中国科学院研究员欧阳志云当
梦晨 发自 凹非寺 量子位 | 公众号 QbitAI 机器人集群自如穿梭密集的竹林,这一幕不是出自电影大片,而是在浙江湖州真实上演。 自然形成的复杂环境对机器人来说是未知的,没有事先测绘。 也没有统一的中央指挥,每一只机器人都在“独立思考”,全靠算法临场反应。 这项来自浙江大学的研究成果登上最新一期Science Robotics封面。 据浙江大学介绍,此前的机器人集群表演大多通过卫星定位和轨迹编码实现,由地面计算机统一控制。 这种模式下,机器人群体一旦失去指挥就会“群龙无首”,不但无法保持队形还可能撞
1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 1049 1050 1057 1062 1063 1064 1070 1073 1075 1082 1083 1084 1088 1106 1107 1113 1117 1119 1128 1129 1144 1148 1157 1161 1170 1172 1177 1197 1200 1201 1202 1205 1209 1212(大数取模) 1216(链表)1218 1219 1225 1228 1229 1230 1234 1235 1236 1237 1239 1250 1256 1259 1262 1263 1265 1266 1276 1279 1282 1283 1287 1296 1302 1303 1304 1305 1306 1309 1311 1314 复杂模拟
领取专属 10元无门槛券
手把手带您无忧上云