小票打印是零售商家的基础功能,在小票信息中,必然会存在一些相关店铺的信息。比如,logo 、店铺二维码等。对于商家来说,上传 logo 及店铺二维码时,基本都是彩图,但是小票打印机基本都是只支持黑白二值图打印。为了商家的服务体验,我们没有对商家上传的图片进行要求,商家可以根据实际情况上传自己的个性化图片,因此就需要我们对商家的图片进行二值图处理后进行打印。
广义的算法是指解决问题的方案,小到求解数学题,大到制定商业策略,都可以叫做算法。而我们今天讨论的软件测试中的算法,对应的英文单词为 Algorithm,专指计算机处理复杂问题的程序或指令。
算法复杂度用于定义问题的难度,另外也有助于开发最优化的算法,算法复杂度能够通过分析最坏情况来降低输入数据对算法性能的影响。
多柱汉诺塔最优算法设计探究 引言 汉诺塔算法一直是算法设计科目的最具代表性的研究问题,本文关注于如何设计多柱汉诺塔最优算法的探究。最简单的汉诺塔是三个柱子(A、B、C),因此多柱汉诺塔的柱子个数M≥3。下面从三柱汉诺塔说起,慢慢深入我们要关心的问题。 1. 三柱汉诺塔 三柱汉诺塔是经典的汉诺塔问题,在算法设计中是递归算法的典型问题。其算法是这样的: 首先把A 柱上面的n- 1 个碟子通过C 柱移到B 柱上【T(n-1)步】,然后把A 柱剩下的一个碟子移到C 柱上【1步】, 最后把B 柱上所有的碟子通过A 柱
我之前写过一篇如何实现AutoML -- 先Auto每个环节,大致思路是让机器先自动化每一个小环节,每个环节输出唯一一个结果,这样可以极大的简化搜索空间。比如我们有三个环节,A,B,C,分别产出10,10,10种可能,为了得到全局最优,我们需要10*10*10尝试1000次完整计算。而如果每个只取一个局部最优,那么只需要计算30次,虽然最终结果可能不是最优的,但在现实中,这也是一个比较可行的方案。
第一题倒是一贯的挺简单的,最简单的思路就是直接做个二层循环就是了,不过我在比赛的时候想岔了,想着那样的算法复杂度恐怕有点高,就想着先将它转换为集合来处理,虽然也没啥问题,但是后来想想,完全没有对时间复杂度有所优化。
ChatGPT 等基于 Transformer 的大语言模型具备极强的在上下文中学习(In-Context Learning,ICL)的能力:输入少量示例样本,即能够正确回答同类问题。如何理解这种 ICL 能力?
版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。
统计学习基于训练数据集,根据学习策略,从假设空间中选择最优模型,最后需要考虑用什么样的计算方法来求解最优模型。
ALiPy 可为主动学习框架提供基于模块的实现,允许用户便捷地评估、对比和分析主动学习方法的性能。它可实现超过 20 种算法,还支持用户在不同的设置下轻松实现自己的方法。
英语:greedy algorithm,又称贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。
在理解了我们需要解决的机器学习问题之后,我们可以思考一下我们需要收集什么数据以及我们可以用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮助。 机器学习领域有很多算法,然后每种算法又有很多延伸,所以对于一个特定问题,如何确定一个正确的算法是很困难的。本文中我想给你们两种方法来归纳在现实中会遇到的算法。 学习方式 根据如何处理经验、环境或者任何我们称之为输入的数据,算法分为不同种类。机器学习和人工智能课本通常先考虑算法可以适应的学习方式。 这里只讨论几个主要的学习风格或学习模型,并
在理解了我们需要解决的机器学习问题之后,我们要思考需要收集什么数据以及我们可以用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮助。 机器学习领域有很多算法,然后每种算法又有很多延伸,所以对于一个特定问题,如何确定一个正确的算法是很困难的。本文中我想给你们两种方法来归纳在现实中会遇到的算法。 机器学习 学习方式 根据如何处理经验、环境或者任何我们称之为输入的数据,算法分为不同种类。机器学习和人工智能课本通常先考虑算法可以适应的学习方式。 这里只讨论几个主要的学习风格
在理解了我们需要解决的机器学习问题之后,我们要思考需要收集什么数据以及我们可以用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,很有帮助。 机器学习领域有很多算法,然后每种算法又有很多延伸,所以对于一个特定问题,如何确定一个正确的算法是很困难的。本文中我想给你们两种方法来归纳在现实中会遇到的算法。 机器学习 学习方式 根据如何处理经验、环境或者任何我们称之为输入的数据,算法分为不同种类。机器学习和人工智能课本通常先考虑算法可以适应的学习方式。 这里只讨论几个主要的学习风
昨天刚刚历史性地第一次打进了前500,今天转头就历史性地打进了前200,实在是有点开心。
前几天飞扬博士更新了一篇算法文章,关于softmax regression的,它是logistic模型的扩展,因此要是能有些logistic regression的底子就看起来非常容易,因此在发softmax regression之前,重新复习一下logistic模型。 一句话介绍: logistic regression,它用回归模型的形式来预测某种事物的可能性,并且使用优势(Odds)来考察“某事物发生的可能性大小”。 上篇介绍了logistic模型的原理,如果你只是想使用它,而不需要知道它的生产过程,
logistic回归:从生产到使用【下:生产篇】 上篇介绍了logistic模型的原理,如果你只是想使用它,而不需要知道它的生产过程,即拟合方法及编程实现,那么上篇就足够了。如果你想知道它的上游生产,那么请继续。 本篇着重剖析logistic模型的内部生产流程、以及每一个流程的工作原理,暴力拆解。 上下两篇的大纲如下: 【上篇:使用篇】 1. Logistic回归模型的基本形式 2. logistic回归的意义 (1)优势 (2)优势比 (3)预测意义 3. 多分类变量的logistic回归 (1)
启发式算法(heuristic)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。
在计算机的存储结构中,存在着局部性原理(在《【软考学习6】计算机存储结构——局部性原理、Cache、主存地址单元、磁盘存取、总线和可靠性》中有介绍)。
今天总算是又一次把4道题全部搞定了,虽然前两题错了三次简直是不能忍,但是好歹算是都做出来了……
RSA最终加密、解密都要用到模乘的幂运算,简称模幂运算。 回忆一下RSA,从明文A到密文B B=Ae1%N 对B解密回到明文A,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多,但解密的时候,这个e2是一个非常非常大的数,显然,直接通过e2次模乘来解密是不现实的。 为了让RSA的加密、解密成为现实,我们必须要找一个好的算法来做模幂运算。 借上一节我设定的符号,以区别于传统上的幂的数学表示, 定义a#b为a和b的模乘, 定义a##n为
leetcode中国和我犯冲觉得没跑了,又一次刷新了我成绩的下限,只做出两道题,国内排名900多,世界都快3000了,从我做题多起来之后已经n久n久没有只做出过两题了,结果最近一段时间居然出现的这么频繁,简直了。。。
中文的leetcode果然和我犯冲,这次比赛又是桑心的一逼,题目倒还好,虽然第二第三题卡了一会,但是好歹都做出来了,但是最坑的是第四题居然比赛的时候没做出来,然后比赛结束之后10分钟给搞定了。。。10分钟,就差这10分钟。。。
内存分配策略 连续内存分配 连续内存分配的地址映射 通过MMU(memory management unit)实现地址的映射转换 固定分区分配 P.286上方 Each partition may contain exactly one process.Thus the degree of multiprogramming is bound by the number of partitions. 每个分区只容下一个程序 动态分区分配 P.286上方 when a partition i
这一题的思路还是挺直接的,只要先找到与给定点存在至少一个坐标相同的点,然后对其按照曼哈顿距离进行排序,然后取第一个元素即可。
HyperLogLog 是最早由 Flajolet 及其同事在 2007 年提出的一种 估算基数的近似最优算法。但跟原版论文不同的是,好像很多书包括 Redis 作者都把它称为一种 新的数据结构(new datastruct) (算法实现确实需要一种特定的数据结构来实现)。
数据结构和算法 算法:解决问题的方法和步骤 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。 渐近时间复杂度的大O标记: - 常量时间复杂度 - 布隆过滤器 / 哈希存储 - 对数时间复杂度 - 折半查找(二分查找) - 线性时间复杂度 - 顺序查找 / 计数排序 - 对数线性时间复杂度 - 高级排序算法(归并排序、快速排序) - 平方时间复杂度 - 简单排序算法(选择排序、插入排序、冒泡排序) - 立方时间复杂度 - Floyd算法 / 矩阵乘法运算
贪心算法属于比较简单的算法,它总是会选择当下最优解,而不去考虑单次递归时是否会对未来造成影响,也就是说不考虑得到的解是否是全局最优。在很多实际问题中,寻找全局最优解的代价是非常大的,这时候就可以通过求次优解来解决问题,这种思想其实在软件工程中很常见,例如React中著名的DOM Diff算法中需要对比两棵DOM树,树的完全对比时间复杂度为O(n^3),而React团队通过只比较同层节点的策略将问题简化为O(n),也就是说得到的结果从全局角度来说并不一定是绝对最优的,但是它可以在大多数情况下表现并不差。
这两天刷了很多蓝桥杯的算法题,因为比赛并且要给学弟学妹去讲题,自己是挺慌的,我没有系统的学习过算法和数据结构,一般是刷题的过程中去恶补相关知识,走了一条弯路去刷题。今天的文章是怀着跟大家学习交流的心态分享一下自己刷题的心得,大家也可以在留言区分享自己刷算法的心得。
这次的比赛结果略惨,只做出3题,然后国内才只有229/3690,世界则是667/9606,都是只有前7%的水平。
希望时间的流逝不仅仅丰富了我们的阅历,更重要的是通过提炼让我们得以升华,走向卓越。 1Tags 排序算法 链表 树 图 动态规划 Leetcode Python Numpy Pandas Matplotlib 数学分析 线性代数 概率论 数据预处理 机器学习 回归算法 分类算法 聚类算法 集成算法 推荐算法 自然语言处理 Kaggle Tensorflow
表示在 2000 个数据中取平均,很接近 1 时看似微小的改动都会带来巨大的差异!
分治法的基本思想: 将一个规模为 n 的问题分解为 k 各规模较小的子问题, 这些子问题互相独立且与原问题是同类型问题。 递归地解这些子问题, 然后把各个子问题的解合并得到原问题的解。 分治法所能解决的问题一般具有的几个特征是: 该问题规模缩小到一定程度就可以容易地解决; 该问题可以分解为若干个规模较小的同类型问题; 利用该问题分解出的子问题的解可以合并为该问题的解; 原问题分解出的各个子问题是相互独立的, 即子问题之间不包含公共的子问题。 分治法可以解决的具体问题:矩阵连乘、大数乘法、二分法搜索、快速排序
上篇一文学会动态规划解题技巧 被不少号转载了,其中发现有一位读者提了一个疑惑,在求三角形最短路径和时,能否用贪心算法求解。所以本文打算对贪心算法进行简单地介绍,介绍完之后我们再来看看是否这道三角形最短路径问题能用贪心算法来求解。
OpenCV是一个跨平台且开源的计算机视觉和机器学习库,全称Open Source Computer Vision Library 。由Intel公司开源。其中主体库的代码是Intel用C/C++编写的,部分贡献库代码由社区程序员提供。
负载均衡的算法很多,而且可以根据一些业务特性进行定制化开发,抛开细节上的一些差异,根据算法所期望能够达到目的,大体上可以分为以下几种负载均衡算法。
啥是二叉堆 二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。二叉堆有两种:最大堆和最小堆。最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
递归的方法需要不断地练习,后期会有算法不断的运用到其思想。将大问题分解为相同的小问题,直至结束。
上篇算法(1) 一、函数的渐近增长 函数的渐近增长:给定两个函数f(n)和g(n),如果存在一个整数N, 使得对于所有的 n > N, f(n)总是比g(n)大,那么,我们说f(n)的增长渐近快于
正如这些学生所言:「我们希望将所有资源都高效地分配到如今迅猛发展的 AI 和 ML 领域。」因此这个项目可以更高效地利用手中的资源,包括将时间、精力和计算资源都投入到真正的当前最优方法和结果上。
作者介绍:Runsen目前大三下学期,专业化学工程与工艺,大学沉迷日语,Python, Java和一系列数据分析软件。导致翘课严重,专业排名中下。.在大学60%的时间,都在CSDN。决定今天比昨天要更加努力。前面文章,点击下面链接
废话不多说,前几天参加去哪网面试,面经如下: 去哪网java实习生面总共分为四轮(我也不知道为什么这么多)。 一面(技术面) 1.自我介绍,并分析简历上的项目,并发情况,数据量大的情况你怎么办 2.分析悲观锁和乐观锁 3.数据库索引(b tree,b+tree) 4.出题建表,写sql,mybatis标签拆分判断。 5.hashmap详细说明,底层数据结构。 6.concurrenthashmap详细说明。 7.treeset(画红黑树) 8.线程常见状况。 9.maven生命周期。 10.linux常用命
近日,南大周志华等人首次提出使用深度森林方法解决多标签学习任务。该方法在 9 个基准数据集、6 个多标签度量指标上实现了最优性能。
相信现在各位看官都在小学阶段学习过质数,但那时年纪尚小,听质数这个数学名词很陌生,在老师的讲述后才有所理解
这一题本身还是比较复杂的,需要比对所有的三元组(i,j,k)是否满足题目定义的good triplet的条件。
本文中若有任何疏漏错误,有任何建议和意见,请回复内核月谈微信公众号,或通过caspar at linux.alibaba.com或者 tao.ma at linux.alibaba.com反馈。
除了对应点方式,还可以将点云将与整个形状对齐,获得6D姿态。通常,首先进行粗配准以提供初始对准,然后进行密集配准方法,如迭代最近点(ICP),以获得最终的6D姿态。针对点云方式,挑选了一些相关的paper,在这里做下基本思想分享。
领取专属 10元无门槛券
手把手带您无忧上云