有A、B、C、D、 E五项任务,需要分配给甲、乙、丙、丁、戊 五个人来完成。他们完成任务所需要支付的酬劳如下表所示,问,如何分配任务,可使总费用最少?
biu~ biu~ biu~ 我们的运筹学教学推文又出新文拉 还是熟悉的配方,熟悉的味道 今天向大家推出的是 运筹学教学--第六弹 分配问题(Assignment Problem)与匈牙利算法(Hun
文章作者:Tyan 博客:noahsnail.com | CSDN | 简书
之前二狗已经分别介绍过了,如何用模拟退火算法和遗传算法,进行背包问题的求解。其实背包问题是可以看成是一个可以看成是一个比较特殊的,有线性约束的,0-1规划问题。在数学中还有很多其他特殊的问题,比如指派问题。指派问题可以看成是更特殊的多个背包问题(很多个背包求优,每个背包只能装一样物品)。基本指派问题一般可以描述为有n个任务n个人。要求为n个任务分配给指定的人来完成。并且在这种基本情况下,人和任务需要是一一对应的关系。不能有重复,不能出现两个人做同一个任务,或者一个人同时做两个任务的情况。(这些情况也属于指派问题的范畴,但属于更加复杂的情况,今天就不做讲解)。指派问题已经有了明确可解的算法,也就是我们大家都知道的匈牙利算法。同样的,这个问题也可以使用模拟退火来解决。今天我们就使用模拟退火算法来为大家演示,如何在指派问题进行优化?
匈牙利算法解决的问题概述:有 n 项不同的任务,需要 n 个工人分别完成其中的 1 项,每个人完成任务的成本不一样。如何分配任务使得花费成本最少?
区位问题(Location Allocation Problem)是GIS 的经典问题之一, 主要应用于城市规划、空间配置、物流中心选址等领域。区位问题类型众多,可从静态或动态的需求、静态或动态的设施区位、离散或连续的地理空间和设施有无容量约束等等等等维度进行类型划分。 最常见的离散区位问题可一般化为p中值(p中位,p-median)、p中心(p-center)和覆盖集(set covering)问题。这些问题可形式化为整型线性规划(MIP)数学模型.
n个人分配n项任务,一个人只能分配一项任务,一项任务只能分配给一个人,将一项任务分配给一个人是需要支付报酬,如何分配任务,保证支付的报酬总数最小。
在电子商务繁荣发展的今天,利用多机器人存取系统可以节约人力成本、提高拣选效率、提高存储密度、降低碳排放,因此许多电商企业选择布局多机器人存取系统,通过“机器换人”,实现“货到人”拣选。随着多机器人存取系统在企业内的应用发展,多机器人存取系统也成为近年来的热点研究问题。本文重点介绍了多机器人存取系统中的热点研究方向,总结了现有的解决方案,最后对未来研究进行了展望。
指派问题 参考 【运筹学】整数规划 ( 整数规划求解方法 | 指派问题 ) 博客 ;
说到滴滴的派单算法,大家可能感觉到既神秘又好奇,从扬召到抢单到派单,我们又是如何演进到今天大家的打车体验的呢,我们首先来看一看,好的派单算法为什么是出行行业不可或缺的能力?
导读:说到滴滴的派单算法,大家可能感觉到既神秘又好奇,从出租车扬召到司机在滴滴平台抢单,最后到平台派单,大家今天的出行体验已经发生了翻天覆地的变化。面对着每天数千万的呼叫,滴滴的派单算法一直在持续努力让更多人打到车。本篇文章会着重介绍滴滴是如何分析和建模这个问题,并且在这过程中面临了怎样的算法挑战,以及介绍一些常用的派单算法。这些算法能够不断提升用户打到车的确定性。
桔妹导读:说到滴滴的派单算法,大家可能感觉到既神秘又好奇,从出租车扬召到司机在滴滴平台抢单最后到平台派单,大家今天的出行体验已经发生了翻天覆地的变化,面对着每天数千万的呼叫,滴滴的派单算法一直在持续努力让更多人打到车,本篇文章会着重介绍我们是如何分析和建模这个问题,并且这其中面临了怎样的算法挑战,以及介绍一些我们常用的派单算法,这些算法能够让我们不断的提升用户的打车确定性。
导读:说到滴滴的派单算法,大家可能感觉到既神秘又好奇,从出租车扬召到司机在滴滴平台抢单最后到平台派单,大家今天的出行体验已经发生了翻天覆地的变化,面对着每天数千万的呼叫,滴滴的派单算法一直在持续努力让更多人打到车,本篇文章会着重介绍我们是如何分析和建模这个问题,并且这其中面临了怎样的算法挑战,以及介绍一些我们常用的派单算法,这些算法能够让我们不断的提升用户的打车确定性。
注意必须先变行 , 然后再变列 , 行列不能同时进行改变 ; 否则矩阵中会出现负数 , 该矩阵中 不能出现负数 ;
在生活中经常遇到这样的问题,某单位需完成n项任务,恰好有n个人可承担这些任务。由于每人的专长不同,各人完成任务不同(或所费时间),效率也不同。于是产生应指派哪个人去完成哪项任务,使完成n项任务的总效率最高(或所需总时间最小)。这类问题称为指派问题或分派问题。
前面几篇主要是解释仿生群体行为的启发式算法,而本文所述模拟退火算法则是一种通用的概率优化算法(虽然求解用到概率手段,但是得到的解往往是全局最优或次优的解),以下通过一些浅显的剖析来突出该算法的特点。其实谈到这个算法个人比较亲切,这是算是在原理上和我专业最接近的一个优化算法,它的原理主要是来自固体退火原理,其主要过程是将固体加温至充分高,再让其以一定的速度缓慢冷却。
1 . 高斯混合模型 与 K-Means 相同点 : 高斯混合模型方法 与 K-Means 方法 , 都是通过多次迭代 , 每次迭代都对聚类结果进行改进 , 最终达到算法收敛 , 聚类分组结果达到最优 ;
针对大规模云边协同的容器集群,为了解决云边资源协同优化与服务质量保障的相关挑战,PPIO边缘云首席科学家王晓飞(天津大学教授,国家级青年人才)和PPIO边缘云联合创始人王闻宇(原PPTV联合创始人)陆续合作提出了两套云边资源优化框架,“KaiS”和“EdgeMatrix”,解决了资源调度、服务编排与请求指派的联合优化问题,并在真实数据集和场景展开了测试,成果收录至IEEE INFOCOM2021与2022(CCF-A网络领域顶会,录取率19%)
通俗的讲,AGV 就是一个用来运输的移动机器人,它是一个搬运工,把货物从A处运到B处,因此AGV的大部分研究也是包含在移动机器人领域内的。
图匹配是计算机视觉和模式识别领域重要的NP难问题。本文主要介绍了基于随机游走的图匹配算法RRWM [1]以及它在超图匹配上的扩展RRWHM [2]。
运输问题(transportation problem) 属于线性规划问题,可以根据模型按照线性规划的方式求解,但由于其特殊性,用常规的线性规划来求解并不是最有效的方法。lpSolve包提供了函数lp.transport() 来求解运输问题,用法如下:
派单策略主要的原则是:站在全局视角,尽量去满足尽可能多的出行需求,保证乘客的每一个叫车需求都可以更快更确定的被满足,并同时尽力去提升每一个司机的接单效率,让总的接驾距离和时间最短。
大数据文摘作品 在4月13号刚结束的O'Reilly和Intel AI Conference上,美团点评的配送算法策略架构师郝井华博士详细介绍了美团外卖即时配送业务的重难点,让我们来看看大数据文摘整理的演讲精华。 郝井华,美团点评研究员 美团外卖是全球最大的外卖平台,以及全球最大的即时配送平台。其共有骑手60万,签约商家150万,每天配送外卖1800万单。 美团要做的是即时配送,也就是在一个小时之内把订单送到客户手中。那么配送模式是如何配置的呢?60万骑手如何能够高效率低成本地工作? 优化配送模式 后台是把
文章目录 一、使用匈牙利法求解下面的指派问题 二、第一步 : 变换系数矩阵 ( 每行每列都出现 0 元素 ) 三、第二步 : 试指派 ( 找独立 0 元素 ) 一、使用匈牙利法求解下面的指派问题 ---- 四人分别完成四项工作所用时间 : A A A B B
本文作者李云帆,四川大学计算机学院 2020级直博研究生。在导师彭玺教授的指导下,博士期间主要围绕深度聚类开展理论、方法和应用的研究。目前已在国际权威刊物Nature Communications/JMLR/TPAMI/IJCV/ICML/CVPR等上发表学术论文13篇,谷歌学术引用共954次;发表于AAAI2021的Contrastive Clustering被引516次,是2021年以来聚类领域引用最高的论文;获首批国家自然科学基金青年学生基础研究项目(博士研究生)资助。
1)聚类的核心概念是相似度(similarity)或距离(distance),有多种相似度或距离的定义。因为相似度直接影响聚类的结果,所以其选择是聚类的根本问题。
美团配送业务场景复杂,单量规模大。下图这组数字是2019年5月美团配送品牌发布时的数据。
聚类分析是没有给定划分类别的情况下,根据样本相似度进行样本分组的一种方法,是一种非监督的学习算法。聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或相似度划分为若干组,划分的原则是组内距离最小化而组间距离最大化,如下图所示:
如何寻找一条合适的路径,几乎是一个永恒的话题。每个人、每天都会遇到。大到全国列车的运行规划,小到每个人的手机导航。其中一部分是关于“如何寻找两个位置间的最短距离”的,这一部分有较为成熟的理论与确切的解法,还有与之匹配的各种算法。
在Redis集群中,槽指派是将数据槽(slot)分配给不同的Redis节点的过程。
1、开始时每个样本各自作为一类; 2、规定某种度量作为样本间距及类与类之间的距离,并计算; 3、将距离最短的两个类聚为一个新类; 4、重复2-3,不断聚集最近的两个类,每次减少一个类,直到所有样本被聚为一类;
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
所谓贪心算法是指,在对问题求解时,总是做出在 当前看来是最好的选择 。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的 局部最优解 。
二分图:又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边所关联的两个顶点i和j分别属于这两个不同的顶点集(i∈A, j∈B),则称图G为一个二分图。
现代的模拟退火算法形成于20世纪80年代初,其思想源于固体的退火过程,即将固体加热至足够高的温度,再缓慢冷却。升温时,固体内部粒子随温度升高变为无序状,内能增大,而缓慢冷却时粒子又逐渐趋于有序,从理论上讲,如果冷却过程足够缓慢,那么冷却中任一温度时固体都能达到热平衡,而冷却到低温时将达到这一低温下的内能最小状态。
传统拣选系统采用传送带运输货物,将货物通过连接在传送带上的分拣口分流至各目的地。该类系统占用面积较大且吞吐能力柔性较低,随着当代物流系统对分拣中心运行能力的要求不断提升,企业对智能分拣系统的需求越发明显。
经典的聚类算法K-means是通过指定聚类中心,再通过迭代的方式更新聚类中心的方式,由于每个点都被指派到距离最近的聚类中心,所以导致其不能检测非球面类别的数据分布。虽然有DBSCAN(density-based spatial clustering of applications with noise)对于任意形状分布的进行聚类,但是必须指定一个密度阈值,从而去除低于此密度阈值的噪音点。
自从开始做公众号开始,就一直在思考,怎么把算法的训练做好,因为思海同学在算法这方面的掌握确实还不够。因此,我现在想做一个“365算法每日学计划”。 “计划”的主要目的: 1、想通过这样的方式监督自己更
最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
工作在七层,可对http做分流策略 正则表达式比haproxy强大 安装、测试、配置简单,通过日志可以解决大多问题 高并发,并发可达到几万次 nginx还可以作为web使用
背景 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上
领取专属 10元无门槛券
手把手带您无忧上云