前些日子比赛在传感器套装里面送了一个智能的摄像头,查了一下价钱,了不得!400多块钱~随着比赛接近了尾声,我的项目也到了尾声,今天整理东西的时候又看到了它,决定探索一下看能有什么好玩的地方~
不知道大家还记不记得,上一篇文章中的X-SQL和HydraNet都是来自微软的模型。微软作为一个老牌科技公司近年不仅在云计算领域迎头赶上,在AI方面也有很多优秀的技术创新和应用。依托于强大的Excel,他们在表格问答方面也有很好的落地土壤。
相比前一年的“百度识图”,2013年百度的压轴产品显得重要许多。27日,手机百度5.0的iOS和安卓版本同期发布。大幅改版的5.0通过百度、发现和我三个频道,提供采用卡片式设计的全新首页、实现了搜索速度的提升以及整合海量的资源和服务。 试用了几天我认为百度移动5.0是对百度移动时代具有关键作用,成则与微信占据中国移动互联网双强引领下一个十年;否则将成为移动老二,沦落到阿里移动一样的困境状态也不是没可能,就算它有4亿用户,以及拥有其他13个过亿的App群组。 4G时代,搜索的危和机。
大量 AI 公司开始重新思考商业逻辑的合理性,而投资者也变得理性而谨慎。泥沙俱下的商业环境里,什么公司才能在这个 AI 的下半场赢得漂亮?
这篇文章算是半个安利但是绝不是广告,个人也很少针对一款软件或者单独写一篇文章讨论某一款软件,但是在公众号私信的推荐下,个人使用了一周之后来好好说说这款软件。
说到人工智能技术,人们首先会联想到深度学习、机器学习技术;谈到人工智能应用,人们很可能会马上想起语音助理、自动驾驶等等,不过,在AIWorld 2017世界人工智能大会上,百度副总裁、AI技术平台体系(AIG)总负责人王海峰却没有讲这些,这次他聊的是知识图谱。 虽然你可能说不出知识图谱的具体定义,但其实每天都在使用它。当你在百度搜索时,搜索结果右侧的联想,就来自于知识图谱技术的应用;你问百度某个字怎么念,答案也来自知识图谱的应用;你和度秘聊天,问他詹姆斯和科比谁厉害、都取得了哪些成就等等,背后都是知识图谱
👆点击“博文视点Broadview”,获取更多书讯 《梦华录》是最近一段时间讨论度颇高的一部电视剧,豆瓣评分一度高达8.8分,是近些年来评分较高的一部古装影视剧。其制作相对精良,画面精美,主要人物的性格特色明显,角色鲜明。并且,这部剧的内容本身当属“披着古装的现代都市剧”,许多情节都能引起人们的共鸣。 不过,今天我们不是来聊剧情的,而是想借这部剧来谈谈知识图谱。从有意思的事情中学习,才能高效地学为所用嘛! 众所周知,知识图谱是由实体和关系组成的网状结构的知识表示。 最新的研究表明,人脑就是通过知识与知识
前几天,谷歌发布了一个全新的书籍搜索产品:“Talk to Books”,用户可以通过对话的方式得到一本书籍的推荐,比如输入:“What is thebest programming language?”(什么是最好的编程语言?),就会被推荐《C Programming for Arduino 》。这个产品是典型的知识图谱技术的应用,它让搜索引擎可以理解用户的问题和每一本书的内容,进而进行精准匹配——就像有人在豆瓣给你荐书一样。事实上,知识图谱仍旧在驱动着已有20多年历史的搜索引擎进化。
人工智能(Artificial Intelligence,AI)是一种通过计算机模拟人类智能的技术,其应用范围越来越广泛。知识图谱(Knowledge Graph,KG)则是人工智能技术中的重要组成部分,它是一种结构化的、语义化的知识表示方式,能够帮助计算机理解和处理人类语言。
AI 科技评论按:现在的市场环境下,企业正面临着竞争逐渐加剧、人力成本增加、人员流动率加快等挑战。而随着企业经历了信息化的成熟阶段,沉淀了大量的数据,大型的企业都开始了数字化转型,它们利用前沿的技术、海量的外部数据以及内部积累的业务数据上下游的关联客户,将数据转化为专家的经验知识,从而提高工作效率和产品销量,并增强产品的用户体验。而知识图谱,则在企业的数字化转型中扮演了重要的作用。
人工智能正逐步从感知智能迈向认知智能,其终极目标是让机器具备类似人类的思维逻辑和认识能力,特别是理解、归纳和应用知识的能力,而知识图谱在这里面起到了非常关键的作用。 所以,本期和大家分享5本知识图谱经典畅销著作和一场线上交流活动,希望能够帮助大家更加系统深入地了解这个领域,将其炉火纯青地运用到实践中! 知 识 图 谱 认真读一本书 1 book 《知识图谱:概念与技术》 简介:本书是一本系统介绍知识图谱概念、技术与实践的书籍。全书共5篇,由16 章构成,力求涵盖知识图谱相关的基本概念与关键技术。“基
在人工智能应用层出不穷的今天,作为软件从业者,我们都非常关注如何在自己研发的应用中使用人工智能技术,以提高软件的智能化水平。
近年来,随着大家对高级认知能力的积极探索,知识图谱因为表达能力强,扩展性好,并能兼顾人类认知与机器自动处理,引起了学术界、工业界以及政府部门的高度关注。
News 新闻 3月29日,复旦大学计算机学院教授、知识工厂实验室创始人、国内最早从事知识图谱研究的学者之一肖仰华博士受聘担任达观数据高级顾问,进一步增强达观数据在文本智能处理领域的技术攻坚力量,共同
随着全球数字经济的蓬勃发展,网络安全与物联网、工业互联网、云计算、5G 等多种场景和技术的融合极大地改变了网络安全防护体系。如何打造智能化的网络安全防护成为了学术界和工业界的热点。基于人工智能的安全运营技术方案(AISecOps)将大幅提升威胁检测、风险评估、自动化响应等关键运营环节的处理效率,大幅减少对专家经验的依赖,助力网络安全运营产业的技术升级。近年来,知识图谱技术得到了迅速发展,本文目的在于探讨智能的安全运营技术中知识图谱技术应该发挥何种作用。
知识图谱是一种基于图的结构化知识表示方式.如何构造大规模高质量的知识图谱, 是研究和实践面临的一个重要问题.提出了一种基于互联网群体智能的协同式知识图谱构造方法.该方法的核心是一个持续运行的回路, 其中包含自由探索、自动融合、主动反馈3个活动.在自由探索活动中, 每一参与者独立进行知识图谱的构造活动.在自动融合活动中, 所有参与者的个体知识图谱被实时融合在一起, 形成群体知识图谱.在主动反馈活动中, 支撑环境根据每一参与者的个体知识图谱和当前时刻的群体知识图谱, 向该参与者推荐特定的知识图谱片段信息, 以提高其构造知识图谱的效率.针对这3个活动, 建立了一种层次式的个体知识图谱表示机制, 提出了一种以最小化广义熵为目标的个体知识图谱融合算法, 设计了情境无关和情境相关两种类型的信息反馈方式.为了验证所提方法及关键技术的可行性, 设计并实施了3种类型的实验: 仅包含结构信息的仿真图融合实验、大规模真实知识图谱的融合实验, 以及真实知识图谱的协同式构造实验.实验结果表明, 该知识图谱融合算法能够有效利用知识图谱的结构信息以及节点的语义信息, 形成高质量的知识图谱融合方案; 基于“探索-融合-反馈”回路的协同方法能够提升群体构造知识图谱的规模和个体构造知识图谱的效率, 并展现出较好的群体规模可扩展性.
👆点击“博文视点Broadview”,获取更多书讯 认知的高度决定了创造价值的高度。 企业在从创办、发展、竞争、成功到衰亡的全生命周期中,会面临复杂多样的决策场景。 然而,时代演变产生的海量、分散、实时的信息,仅靠人类个体是难以高效、准确地感知、认知和决策的。 因此,企业需要通过大数据与人工智能技术,提升对业务的智能分析与决策能力,以此提升在快速、复杂的博弈场景中的竞争力。 那么如何运用人工智能技术增强企业的认知智能呢? 在企业营销服务、设备生产运维的场景中,知识图谱与认知智能技术可以通过数据知识聚合、
二者展示的信息量是差不多的,但右边这种看起来更加直观。而且,随着文本篇幅的增长,这种优势会体现得更加明显。
当前人工智能正在经历从感知智能到认知智能的重要发展阶段。认知是人们获取和应用知识的过程,因此,作为人类对客观世界认知的一种表现形式,知识图谱是认知智能研究不可或缺的组成部分。
此文内容取自肖仰华教授在华为、CCF等场合所做报告,完整内容见书籍《知识图谱:概念与技术》的第15章《知识图谱实践》。
竹间科技创始人兼CEO简仁贤曾在世界人工智能大会上发表了一篇题为《认知智能赋能企业转型》的演讲,重点探讨了认知智能的基石——知识图谱,阐述了知识图谱的定义、优势等,接着围绕产业界极重视的大规模落地问题,结合具体例证及经验心得,描绘了跨越众多行业的不同应用。以下为竹间科技创始人简仁贤先生演讲内容的精彩节选。
2016 年起,人工智能成为中国开发者重点关注的技术领域,以深度学习驱动的计算机视觉、自然语言处理、语音相关技术成为渗透最广的三个 AI 技术领域。然而,在这样的背景下,AI 仍是一个非常前沿的学科,对于中国开发者而言有很多需要克服的障碍,首当其冲的就是算法成熟度问题。此外,不同领域不同产业的 AI 应用场景复杂度与日俱增,给很多开发者树立了天然门槛。
知识图谱是下一代可信人工智能领域的关键技术组成之一。围绕知识的归纳抽取、演绎推理等处理与分析过程,诸多关键问题逐步被攻克,大幅推动了机器认知技术的发展。在网络空间安全领域,防御技术的智能化升级也亟需成熟、有效的网络空间安全领域知识图谱(以下简称为安全知识图谱)技术体系,为应对强对抗、高动态环境下的攻防博弈提供知识要素与推理智能支撑。为了归纳总结安全知识图谱的关键技术研究进展,本文将尝试通过技术概述的方式,尝试回答以下几个问题,期望为读者较成体系化的安全知识图谱研究现状总结。
“知识就是力量”我们耳熟能详,但培根的这句话其实还有后半句“更重要的是运用知识的技能”。对于人工智能来说,知识图谱就是其如何对知识进行运用的技能体现。在金融领域,如何运用这一技能更好地理解客户需求,提高业务效率和客户满意度,同时进行风险管理?招商银行给出了他们的答案。 作者 | 李金龙、贺瑶函、郑桂东 出品 | 新程序员 知识图谱是一种用于描述实体、属性和它们之间关系的结构化语义网络,通常以图形模型的形式呈现。知识图谱可以帮助机器理解信息,并支持自然语言处理、搜索引擎优化等领域的发展。应用在招商银行的业务场
本期会议邀请到来自百度等头部企业的代表,来自清华大学的研究人员,以及来自维智科技、河溓海平等时空AI明星创业企业的技术负责人,一起深入探讨时空知识图谱在构建与行业应用落地所面临的机遇和挑战,并进一步了解时空知识图谱的技术发展,以及对应的相关解决方案。3月16日,欢迎报名! 为工程师提供顶级交流平台 CCF TF第96期 主题 知识图谱赋能时空AI 2023年3月16日 19:00-21:00 长按识别或扫码报名 报名链接:https://conf.ccf.org.cn/TF96 时空人工智能(Spati
2017年,知识经济日益火爆,分答、知乎、得到等知识平台可谓如日中天。眼下这种火爆已在从人类延展到机器。互联网巨头纷纷对知识变得饥渴起来,知识成为数据之后的又一个香饽饽。 互联网巨头对知识越来越青睐 两三年来,互联网大佬言必谈数据,特别是大数据。曾有人戏称马云应该叫“Data Ma”,因为不懂技术的马云,十分钟爱谈大数据,马云的“五新理论”中有一个是“新能源”,其认为未来机器吃的不是电,而是数据。其外,李彦宏、马化腾等大佬关于大数据都有不少言论,马化腾说数据是AI应用的四大要素之一,李彦宏也提到:“由数据、
10月31日,由北京智源人工智能研究院主办的2019北京智源大会在国家会议中心开幕,本次大会吸引到了国内外人工智能领域的顶级专家学者参与,他们围绕人工智能基础研究现状及面临的机遇和挑战、人工智能技术未来发展的核心方向等话题,展开了深入研讨。
人工智能的发展可分为感知智能、认知智能和行动智能三个阶段。当下行业正处于认知智能的起步阶段,而从感知智能到认知智能的过程中,知识图谱是关键技术之一。
👆点击“博文视点Broadview”,获取更多书讯 近两年,人工智能领域的大模型可谓炙手可热。以自然语言处理领域为例,自BERT横空出世,在各种评测上分数一飞冲天,在斯坦福阅读理解评测集上超越人类水平之后,各种越来越大的自然语言处理模型不断涌现,并在各种评测中不断刷新出新的记录。 图1是近年来不同的预处理模型的情况,可以看出模型规模呈指数级增长。由此,许多人已经对模型越大效果越好(Larger model, better performance)深信不疑,并逐渐形成了AI领域的“军备竞赛”。 图1 “大
人工智能从感知阶段逐步进入认知智能的过程中,知识图谱技术将为机器提供认知思维能力和关联分析能力,可以应用于机器人问答系统、内容推荐等系统中。
---- 新智元报道 作者:专知 【新智元导读】本文件给出了知识图谱的技术框架中知识图谱供应方、知识图谱集成方、知识图谱用户、知识图 谱生态合作伙伴的主要活动、任务组成和质量一般性能等。本文件适用于知识图谱及其应用系统的构建、应用、实施与维护。 来自“ 知识图谱标准化” 本文件给出了知识图谱的技术框架中知识图谱供应方、知识图谱集成方、知识图谱用户、知识图 谱生态合作伙伴的主要活动、任务组成和质量一般性能等。本文件适用于知识图谱及其应用系统的构建、应用、实施与维护。 本文件给出了知识图谱的技术
本文介绍了知识图谱的概念、发展历程,以及明略数据在知识图谱领域的应用和贡献。明略数据作为知识图谱领域的领军企业,通过多年的技术积累和创新,已经成功应用于金融、公安、工业等多个行业。未来,明略数据将继续深耕知识图谱领域,推动大数据技术与知识图谱的融合发展,为行业提供更为高效、智能的解决方案。
过去10年,知识图谱可谓是最接近“人工智能”的概念。业内普遍认为,知识图谱的概念最先是由谷歌于2012年正式提出,主要用来支撑下一代搜索和在线广告业务。
人工智能的发展分为三个阶段——计算智能、感知智能和认知智能。简要来讲,计算智能即快速计算、记忆和存储能力,可以应用于空间搜索、数值优化和数字模拟;感知智能即视觉、听觉等感知能力,当下热门的语音识别、图像识别、视频处理便属于感知智能的典型应用,商汤科技、云从科技等AI四小龙是视觉领域的头部玩家;认知智能是指在数据结构化处理的基础上,理解数据之间的关系和逻辑,并在理解的基础上进行分析和决策,认知智能包括理解、分析、决策三个环节。
面向垂直行业,结合专家知识、多源异构的碎片化知识和组织智能,引领从大数据分析到大知识工程进而大智慧系统的研发和落地应用。构建行业知识图谱,实现智能推理与知识服务,推进多机多人多任务的人机协同,开发新一代知识工程的技术体系和系统平台,服务搜索、推荐、规划、对话机器人等领域的情景感知和人机协同。
随着信息的爆炸性增长,构建能够理解、推理和应用知识的系统变得愈发重要。知识图谱作为一种结构化的知识表示方式,与自然语言处理(NLP)的结合将为构建更智能的系统打开崭新的可能性。本文将深入研究NLP在知识图谱中的应用,从基础概念到实际应用,揭示这一领域的发展趋势和潜在挑战。
翻译自 How Knowledge Graphs Make Data More Useful to Organizations 。更多链接查看原文。
知识图谱作为典型的符号表示系统,如何有效用于机器学习算法,面临着知识表示、 知识获取和计算推理等方面的诸多挑战。
比如“C罗”是一个实体,“金球奖”也是一个实体,他们俩之间有一个语义关系就是“获得奖项”。“运动员”、“足球运动员”都是概念,后者是前者的子类(对应于图中的subclassOf 关系)。
2012年谷歌首次提出“知识图谱”这个词,由此知识图谱在工业界也出现得越来越多,对于知识图谱以及相关概念的理解确实也是比较绕。自己在研究大数据独角兽Palantir之后开始接触知识图谱,也算对其有了一定了解,这里从三个角度总结一下怎么去理解知识图谱。
在这个信息飞速发展的时代,数据呈爆炸式增长。而互联网信息的多元性、异构性、结构松散等特点,给人们有效获取信息和知识带来了挑战。
由深度学习掀起的这波 AI 浪潮极度依赖数据,经过 10 年的发展,深度学习在一些场景应用上已经面临瓶颈。业内有一种声音得到了大量认同:人工智能的进一步发展与突破,需要从感知智能向认知智能的突破,知识图谱能有效从数据中挖掘出知识,以更具可解释性的 AI 指导人类在更多复杂场景中的智能决策和行动。
知识图谱为互联网上海量、异构、动态的大数据表达、组织、管理以及利用提供了一种更为有效的方式,从而提高网络的智能化水平,使其更接近于人类的认知思维。
👆点击“博文视点Broadview”,获取更多书讯 在企业数字化、智能化转型的研发、生产、供应、销售、服务等诸多场景中,如何融合数据与专家知识,协同驱动业绩增长是一个多方关注,且难以解决的难题。 比如: 如何干预用户认知?企业应如何对针对不同用户群体,制定合适的北极星指标,生成并选择最优的策略,在不同场景中对用户群体进行干预,引导用户的认知变化,带来活跃与付费的业绩增长? 如何融合多方知识?企业应如何将业务需求知识、场景事理知识、用户、商品等业务目标知识进行关联与聚合,并被用户洞察分析、标签生产、数据平台
牛广林,北京航空航天大学在读博士,研究方向为知识图谱与知识推理,以第一作者发表一篇AAAI2020论文。
领取专属 10元无门槛券
手把手带您无忧上云