SVM 支持向量机 原理就不赘述了,相关文章可以看这里 支持向量机(SVM)用于上证指数的预测 支持向量机(SVM)入门详解(续)与python实现 支持向量机SVM入门详解:那些你需要消化的知识 SVM是一种十分优秀的分类算法,使用SVM也能给股票进行一定程度上的预测。 核心 因为是分类算法,因此不像ARIMA一样预测的是时序。分类就要有东西可分,因此将当日涨记为1,跌记为0,作为分类的依据。使用历史数据作为训练数据。 处理数据: 股票历史数据来源于yahoo_finance api,获取其中Op
作者:东哥起飞,来源:Python数据科学 本文开启时间序列系列的相关介绍,从零梳理时序概念、相关技术、和实战案例,欢迎订阅 👉「时间序列专栏」 跟踪全部内容。 本篇介绍时间序列的定义、任务、构成以及预测方法,主要是基本概念的介绍和理解。 时间序列定义 时间序列,通俗的字面含义为一系列历史时间的序列集合。比如2013年到2022年我国全国总人口数依次记录下来,就构成了一个序列长度为10的时间序列。 专业领域里,时间序列定义为一个随机过程,是按时间顺序排列的一组随机变量 ...X_1,X_2,..X_T...
像股票价格、每日天气、体重变化这一类,都是时序数据,这类数据相当常见,也是所有数据科学家们的挑战。
时间序列预测就是利用过去一段时间的数据来预测未来一段时间内的信息,包括连续型预测(数值预测,范围估计)与离散型预测(事件预测)等,具有非常高的商业价值。
随着得物业务的快速发展,积累了大量的时序数据,这些数据对精细化运营,提升效率、降低成本有着重要作用。在得物的时序数据挖掘场景中,时序预测Prophet模型使用频繁,本文对Prophet的原理和源码进行深入分析,欢迎阅读和交流。
在前期推文Python中的时序分析工具包推荐(1)中介绍了时序分析的三个工具包,分别侧重于时序特征工程、基于sklearn的时序建模和更为高级的时序建模工具。今天,本篇再来介绍4个时序分析好用的工具包:Prophet、Merlion、Darts和GluonTS。
去年Facebook开源了一套时序预测工具叫做Prophet。Prophet是一个预测时间序列数 据的模型。 它基于一个自加性模型,用来拟合年、周、季节以及假期等非线性趋势。 它在至少有一年历史数据的日常周期性数据,效果最好。 Prophet对缺失值,趋势的转变和大量的异常值是有极强的鲁棒性。Prophet中文翻译是:“先知”。名字还是挺贴切的。在看完本篇文章后,你将会知道:
时序预测从不同角度看有不同分类。从实现原理的角度,可以分为传统统计学、机器学习(又分非深度学习和深度学习)。
昨日,机器之心联合 MoBagel(行动贝果) 举行了 AutoML 线下技术分享会,我们很荣幸邀请到两位来自硅谷的技术大咖,MoBagel 钟哲民与郭安哲,他们向我们介绍了全流程 AutoML 技术到底是什么,它能干什么,能做哪些极致优化。
本文使用一个完整的例子来理解python数据科学,例子用到numpy/pandas/matplotlib/keras这些和数据科学相关的python库,实现数据预处理、分析、时间序列模型训练及预测一整个流程。最终目的是帮助理解python数据科学的一般过程,以及熟悉python相关科学计算库的使用。
作者:东哥起飞,来源:Python数据科学 本文开启时间序列系列的相关介绍,从零梳理时序概念、相关技术、和实战案例,欢迎订阅 👉时间序列专栏 跟踪全部内容。 本篇介绍时间序列的平稳性的相关概念。很多传统时序方法比如ARMA、ARIMA都需要时序具备平稳性,那什么是时序的平稳性?为什么需要平稳性,平稳性有什么作用? 什么是平稳性? 时间序列平稳性是指一组时间序列数据看起来平坦,各阶统计特征不随时间的变化而变化。平稳性分为宽平稳和严平稳,我们分别给出定义: 严平稳 严平稳是一种条件很苛刻的定义,时间序列的所有统
飞桨时序模型库PaddleTS具备统一的时序数据结构、全面的基础模型功能、丰富的数据处理和分析算子以及领先的深度时序算法,可以帮助开发者实现时序数据处理、分析、建模、预测全流程,在预测性维护、能耗分析、价格销量预估等场景中有重要应用价值。
循环神经网络(Recurrent Neural Network,RNN)是一种能够处理序列数据的神经网络模型,常用于自然语言处理、时间序列分析等任务。本教程将介绍如何使用Python和PyTorch库实现一个简单的循环神经网络,并演示如何在一个简单的时间序列预测任务中使用该模型。
你不必按照原样对你的时间序列预测问题进行建模。
关于时序数据的关联模型,笔者陆陆续续更新了一些,包括了, 传统的时序模型学习 statsmodels︱python常规统计模型库 python实现logistic增长模型
根据郑州市某年8-11月各地铁闸机刷卡数据来预测12月1-7日的地铁客流量。通过对数据进行分析和清理后我们发现该问题为时序模型问题,因此我们在建立模型时分析并去除了异常的时间点,再应用构建的时序模型预测出相应的客流量。
作者|Alan Descoins 译者|薛命灯 编辑|Emily Pipenv Pipenv 最初是由 Kenneth Reitz 开发的一个业余项目,旨在将其他包管理器(如 npm 和 yarn)的概念引入到 Python 当中。有了 Pipenv,开发人员就不需要再安装 virtualenv 和 virtualenvwrapper,也不需要管理 requirements.txt 文件。他们只需要在 Pipfile 文件中声明依赖,然后通过命令行来添加、移除和更新依赖。Pipeenv 会生成 Pipf
众自20世纪80年代至今,随着改革开放的深入以及中国最终加入WTO,我国的对外贸易实现了跨越式的发展,中国已经成为世界第一大出口国和第二大进口国,中国经济对世界经济做出了重大贡献(点击文末“阅读原文”获取完整代码数据)。
在很多时间序列的项目开始,我们常常需要理解业务需求,分析数据特征,以建立第一个基础模型。这作为一个标准基线方案,为后续的优化和提升提供指引。过去,很多初学者对于复杂专业的时间序列特征选择过程无从下手。数据处理,建模和验证,这些过程都需要从业者从头开始进行模型构建,训练和测试。这时就会花费很多的时间。
我国以前一直以来都是世界上大豆生产的第一大国。但由于各国的日益强大,导致我国豆种植面积和产量持续缩减。因此,预测我国的大豆产量对中国未来的经济发展有着极其重要的作用。
很抱歉几日没见(搬砖人在工地,抽不开功夫水文章),一见面就带给大家这么个东西。因为这个东西真的是太难安装辣!我出来没有见过这么难安装的东西。。。各种错误各种坑,我现在离论文提交还有9个小时,可是我还是安装库,安装库。。。我好愁。
束开亮,携程大市场部BI团队,负责数据分析与挖掘。同济应用数学硕士,金融数学方向,法国统计学工程师,主修风险管理与金融工程。
时序图显示,该序列既包含长期趋势又包含以年为周期的季节效应 差分平稳化 对原序列做1阶差分消去趋势,再做4步差分消去季节效应的影响,差分后序列时的时序图:
2017 年即将结束,又到了总结的时刻。本文作者把范围限定为机器学习,盘点了 2017 年以来最受欢迎的十大 Python 库;同时在这十个非常流行与强大的 Python 库之外,本文还给出了一些同样值得关注的 Python 库,如 PyVips 和 skorch。 十二月是静静坐下来总结过去一年成就的时候。对程序员来说,则通常是回顾那些今年推出的开源库,或者由于其极好地解决了一个特定问题而最近变的大为流行的开源库。 过去两年来,我们一直通过发表博文的方式做这件事,指出当年 Python 社区中出现的一些最
最近调研了很多时间序列相关的模型、框架,准备开始学习时序。这里先介绍一款Facebook开源的时序利器:Kats
选自tryolabs 机器之心编译 参与:蒋思源、黄小天、刘晓坤 2017 年即将结束,又到了总结的时刻。本文作者把范围限定为机器学习,盘点了 2017 年以来最受欢迎的十大 Python 库;同时在这十个非常流行与强大的 Python 库之外,本文还给出了一些同样值得关注的 Python 库,如 PyVips 和 skorch。 十二月是静静坐下来总结过去一年成就的时候。对程序员来说,则通常是回顾那些今年推出的开源库,或者由于其极好地解决了一个特定问题而最近变的大为流行的开源库。 过去两年来,我们一直通过
长短时记忆网络(Long Short-Term Memory,LSTM)是一种特殊类型的循环神经网络(RNN),专门设计用来解决序列数据中的长期依赖问题。本教程将介绍如何使用Python和PyTorch库实现一个简单的LSTM模型,并展示其在一个时间序列预测任务中的应用。
数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。
对原序列做1阶12步差分,希望提取原序列的趋势效应和季节效应,差分后的时序图如下所示:
假设要解决一个时序问题:根据过往两年的数据(2012 年 8 月至 2014 年 8月),需要用这些数据预测接下来 7 个月的乘客数量。
高盛,抑或是摩根大通,这些传统意义上的金融投行,正在投入大量人力和资本,向AI技术公司转型,而他们也已经从自己的AI 战略中尝到了甜头。事实上,它们只是整个金融行业发展趋势的代表。
多元时间序列预测任务主要解决的是输入多变量时间序列,预测多变量未来序列的问题,多变量的序列之间存在一定的相互影响关系。多元时间序列预测相比一般的单变量时间预测,如何在建模temporal关系的同时建立不同变量空间上的关系至关重要。今天给大家介绍两篇2022年8月份发表的最新多元时间序列预测工作,两篇工作均有开源代码。
###############################################################
深度学习方法是一种利用神经网络模型进行高级模式识别和自动特征提取的机器学习方法,近年来在时序预测领域取得了很好的成果。常用的深度学习模型包括循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)、卷积神经网络(CNN)、注意力机制(Attention)和混合模型(Mix )等,与机器学习需要经过复杂的特征工程相比,这些模型通常只需要经数据预处理、网络结构设计和超参数调整等,即可端到端输出时序预测结果。深度学习算法能够自动学习时间序列数据中的模式和趋势,神经网络涉及隐藏层数、神经元数、学习率和激活函数等重要参数,对于复杂的非线性模式,深度学习模型有很好的表达能力。在应用深度学习方法进行时序预测时,需要考虑数据的平稳性和周期性,选择合适的模型和参数,进行训练和测试,并进行模型的调优和验证。来源:轮回路上打碟的小年轻(侵删)
GitHub 上开源的字体不在少数,但是支持汉字以及其他非英文语言的字体少之又少,记得上一个字体还是 霞鹜文楷,本周 B 站知名设计 UP 主开源了的得意黑体在人文观感和几何特征之间找到了美的平衡。
本课程以 Python 为主要开发语言,深入浅出,快速上手深度学习技术。学习本课程:
1、时间序列分析之前,需要进行序列的预处理,包括纯随机性和平稳性检验。根据检验结果可以将序列分为不同的类型,采取不同的分析方法。
时间序列预测的应用非常的广泛,像股票预测、销量预测、贷款预测等等,在生产生活中发挥着极大的价值。现有的模型,比如ARIMA,Prophet,状态空间模型或者神经网络模型等,主要是对单条时间序列进行建模分析。然而,在很多真实场景中,需要预测的时序变脸常常是描述具体结果的“宏观变量”,例如沪深指数大盘走势,电商平台GMV等,这些宏观变量的变化通通都受其下层微观因素变化所决定,单单对宏观时间序列建模往往得不到很好的效果。
项目链接:https://github.com/madalinabuzau/tensorflow-eager-tutorials
在这篇文章中,科赛网后端研发工程师高朋首先介绍了 Cluster Auto Scaler 的主要设计、功能和他们对 Cluster-Autoscaler 的一些改动,使得这个组件可以支持预测性伸缩。
tensorflow基于图结构深度学习框架,内部通过session实现图和计算内核交互。
时序是什么?时序预测可以为业务带来哪些价值?产品销量预测、电池剩余寿命预测……这些高价值场景如何提高预测准确率?深度学习模型在时序预测有什么优势?如何寻得一款集前沿高尖时序技术的产品,为业务所用?
时间数据分析在各行各业中扮演着至关重要的角色。从金融领域的股票价格预测到销售数据的趋势分析,时间序列数据的预测和分析对于决策制定至关重要。而指数平滑法是一种简单而有效的时间序列预测方法,能够快速地捕捉数据的趋势和季节性变化。在这篇文章中,我们将介绍如何使用Python中的Pandas库来实现指数平滑法进行时序数据预测分析,并探讨其在实际项目中的应用与部署。
笔者阅读的是中文书籍,所提到的公式,笔者将给出其在英文书籍上的页码。英文书籍见 Sutton 个人主页:http://incompleteideas.net/book/the-book.html
近年来,以注意力机制为结构核心的 Transformer 模型在时序预测领域取得了突破性进展,其点到点的注意力机制天然适合建模时间序列中的时序依赖。然而,预测非平稳的时序数据对这类模型而言依然是一项严峻挑战。非平稳的时序数据在现实世界中非常普遍,具有复杂且难以捕捉的时序依赖,以及随着时间不断变化的数据分布,这对深度模型的建模能力以及泛化性都提出了更高的要求。
本文从两篇高影响力的时序预测文章谈起,其中一篇是18年放在arXiv上的文章,文中总结性地提出了时序卷积网络(TCN: Temporal Convolutional Network),短短两三年引用数已经破千,TCN作为一种基准方法被广泛应用于各种时序预测问题。
机器之心发布 作者:张皓 本文将介绍视频理解中的三大基础领域:动作识别(Action Recognition)、时序动作定位(Temporal Action Localization)和视频 Embedding。 1.视频理解背景 根据中国互联网络信息中心(CNNIC)第 47 次《中国互联网络发展状况统计报告》,截至 2020 年 12 月,中国网民规模达到 9.89 亿人,其中网络视频(含短视频)用户规模达到 9.27 亿人,占网民整体的 93.7%,短视频用户规模为 8.73 亿人,占网民整体的 88
时间序列是一系列按时间排序的值,预测时间序列在很多真实工业场景中非常有用,有非常多的应用场景。预测时序的关键是观察时序之间的时间依赖性,发现过去发生的事情是如何影响未来的。然而这其中有不少挑战。
领取专属 10元无门槛券
手把手带您无忧上云