首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    校园安全Ai视频分析预警算法

    校园安全Ai视频分析预警算法通过yolov5+python深度学习算法网络模型,校园安全Ai视频分析预警算法对学生的行为进行智能监测和预警如识别学生打架斗殴、抽烟、翻墙、倒地以及异常聚集等行为,及时发出预警通知。校园安全Ai视频分析预警算法YOLO模型的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看,与前面介绍的CNN分类网络没有本质的区别,最大的差异是输出层用线性函数做激活函数,因为需要预测bounding box的位置(数值型),而不仅仅是对象的概率。所以粗略来说,YOLO的整个结构就是输入图片经过神经网络的变换得到一个输出的张量。

    01

    人员操作行为识别监测

    人员操作行为识别监测算法实时监测人员的操作行为,人员操作行为识别监测算法通过yolov7深度学习算法网络模型,对前端采集人员操作行为的图像使用算法进行分析,识别出不符合规范的操作行为,并发出告警信号以提醒相关人员。在人员操作行为识别监测算法训练之前,先在ImageNet上进行了预训练,其预训练的分类模型采用图8中前20个卷积层,然后添加一个average-pool层和全连接层。人员操作行为识别监测算法预训练之后,在预训练得到的20层卷积层之上加上随机初始化的4个卷积层和2个全连接层。由于检测任务一般需要更高清的图片,所以将网络的输入从224x224增加到了448x448。

    04

    会员权益核心引擎ZCube原理与实践

    Tech 导读 目前会员权益业务已经步入成熟期,自有场用户已经趋于饱和状态,而新的突破口是利用权益和积分杠杆来撬动商城场的用户,达到金融App用户增长,能撬动多少用户就要联合金融各业务线、利用权益来进行用户的渗透,而每个业务线对权益的渗透过程,都有着各自的利益点和独到之处。因此权益系统能否支持“业务规则类需求”的灵活定制占据举足轻重的地位。如何解决规则开发的效率问题,最大化解放开发团队成为目前最大的技术挑战点。规则引擎作为特定领域工具,顺理成章的成为这个挑战点的“关键解法”。 有了明确的目标和诉求后,本文调研了常见的规则引擎系统,对Drools、Urule、Aviator、QLExpress等功能做了深入的源码研究,结合目前的业务场景开发了一款适合自身业务功能的规则引擎:ZCube,它既包含了丰富的可视化规则建模设计器,如:脚本式、向导式等,又支持高可用易扩展的架构体系。支持将多个规则打包为知识包文件,在管控平台和业务系统之间进行灰度发布推送、全量发布推送、推送轨迹管理、版本管理、历史版本回退以及知识包执行告警、健康度监控等,实现了让业务规则以知识的形式保存在知识库中,可以在规则发生变动时轻易做出修改,结合后管下发能力实现规则热插拔和热更新。同时可视化界面更易于理解,可以有效地弥补业务分析师和开发人员之间的沟通问题。

    01

    欧盟通过新规:将提高网络犯罪活动处罚力度

    欧盟立法者7月4日同意加强整个欧盟内部针对网络攻击活动的刑事处罚措施,尤其是对国家基础设施造成损害以及劫持电脑以窃取敏感数据的网络攻击活动。就目前而言,欧盟28个成员国对网络犯罪活动的处罚措施各不相同。根据欧盟立法者一致达成的决定,对于试图非法存取信息系统的犯罪分子来说,各国的最高刑罚为入狱至少两年。而对于针对电厂、交通设施或政府网络等基础设施发起的网络攻击活动,最高刑罚为入狱至少五年,高于大多数欧盟成员国目前的刑罚。 另外,欧盟立法者还决定提高针对拦截通信或生产及出售相关工具等网络犯罪活动的处罚力度。网络

    09
    领券