在芯片制造过程中,因为一些系统误差和一些随机误差,使得实际生产出来的器件参数和实际理论参数存在一定的偏差,然而我们可以通过电路设计或器件布局或走线等相关措施(也就是匹配),使这种偏差减小到最小。换句话说,就是使器件对引起偏差的各种原因不敏感。
量子点是一种重要的低维半导体材料,其三个维度上的尺寸都不大于其对应的半导体材料的激子玻尔半径的两倍。量子点一般为球形或类球形,其直径常在2-20 nm之间。常见的量子点由IV、II-VI,IV-VI或III-V元素组成。具体的例子有硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点等。
生 化 小 课 医学生:生理生化 必有一挂 生科/生技:生化书是我见过最厚的教材 没有之一 每周一堂 生化小课 —— 期末/考研 逢考必过—— 蛋白质可以被分离和纯化 在确定蛋白质的性质和
ReRAM的核心是一个很简单的概念:电阻值的切换。这种机制涉及灯丝的形成和电场的影响,是ReRAM在现代内存解决方案领域脱颖而出的原因。了解这些原则对于充分了解ReRAM的潜力至关重要。
点击上方“LiveVideoStack”关注我们 ▲扫描图中二维码或点击阅读原文▲ 了解音视频技术大会更多信息 ---- 编译:Alex 技术审校:赵军 显示技术 视 野 #010# 每一天,我们都在透过电视、电脑和手机等设备的屏幕观看流媒体内容。随着硬件设备和流媒体技术的不断发展和更新,屏幕显示技术也在不断进化。今天,就让我们跟随历史的脚步,一起来回顾一下屏幕显示技术发展历程中的重要里程碑。 CRT的问世 1869年,德国物理学家Julius Plücker和Johann Wilhe
2017上半年彩电销量持续走低,季度销量的下滑速度从一季度的5.3%到二季度的7.3%,呈现扩大趋势。这似乎印证了去年开始关于“彩电行业规模上限”、“拐点”之类的言论。
最早被用来记录大脑活动的技术包括:基于检测神经元的电位变化技术(基于电极的侵入式技术)和基于神经元集群的电位变化技术(非侵入式技术,比如脑电图EEG).
芯片作为这几年走入大众耳目的一个话题越来越被国家和人民重视。但是芯片到底是什么,如何设计、又是如何制作出来、又是如何被装入电脑、手机、汽车、甚至人脑里面。
等离子体刻蚀(也称干法刻蚀)是集成电路制造中的关键工艺之一,其目的是完整地将掩膜图形复制到硅片表面,其范围涵盖前端CMOS栅极(Gate)大小的控制,以及后端金属铝的刻蚀及Via和Trench的刻蚀。在今天没有一个集成电路芯片能在缺乏等离子体刻蚀技术情况下完成。刻蚀设备的投资在整个芯片厂的设备投资中约占10%~12%比重,它的工艺水平将直接影响到最终产品质量及生产技术的先进性。 最早报道等离子体刻蚀的技术文献于1973年在日本发表,并很快引起了工业界的重视。至今还在集成电路制造中广泛应用的平行电极刻蚀反应室(Reactive Ion Etch-RIE)是在1974年提出的设想。
让如上两个物件产生动力的可不是什么小玩具,而是离子等离子推进器(ionic plasma thruster)。
机器之心报道 编辑:泽南、小舟 从工作原理上看,比硅芯片更像人脑了。 神经网络计算的未来可能比我们预计的要糟糕一些——不是用电的固体芯片,而是泡在水里。 近日,哈佛大学工程与应用科学学院(SEAS)与初创公司 DNA Script 组成的团队成功开发了一种基于水溶液中离子运动的处理器。 物理学家们认为,由于更接近大脑传输信息的方式,因此这种设备可能是类脑计算的下一步。 「水溶液中的离子电路使用离子作为电荷载体进行信号处理,」研究人员在论文中表示。「我们提出了一种水性离子电路…… 这种能够进行模拟计算的功能性
机器之心报道 机器之心编辑部 利用可控核聚变发电是人类一直以来的梦想,现在,它没那么遥远了。 核聚变能具有资源丰富、无碳排放和清洁安全等突出优点,是人类未来理想的清洁能源之一。如果可控核聚变发电技术得以实现,人类的能源焦虑将得到极大缓解,对太空的探索也将更加深入。 科幻小说《三体》中对于可控核聚变实现之后的描述。 最近,一个新超导磁体的出现,让人类在核聚变发电之路上又前进了一步。 在 9 月 8 号的一个在线新闻发布会上,美国新能源初创公司 Commonwealth Fusion Systems(简称
我们在阅读各类光芯片的相关文章时,每个实验室都有自己的绝活,可以用自己所擅长的微加工手段制成光芯片,完成特定的功能。这篇笔记主要总结与比较下不同材料体系的优劣。
请允许我用一种传统的方式——引用词典中的定义开启这篇文章,即从科学的角度使用字典中对 "客观证据 "的定义:“如要称之为科学,调查方法必须遵循特定的推理原则收集可观察的、可验证的、可测量的证据。科学方法包括通过观察和试验收集数据,以及提出及测试假设。”1
这篇文章详细概述了植入式神经电极阵列器件与材料的研究进展。本文介绍了不同尺度神经电信号记录原理,并详细梳理了在体神经电极阵列材料与器件的概况与进展展,文章由都展宏,鲁艺,蔚鹏飞,邓春山,李骁健等研究人员发表在《物理化学学报》期刊上。
自从7月底,宁德时代揭开第一代钠离子电池的“神秘面纱”之后,关于这类新电池的争议就一直没有停息。
几位硅光大佬最近合作撰写了一篇文章,贴在了arXiv上。文章整理总结了当前硅光技术的技术难点与发展趋势,并展望了下一代硅光技术,高屋建瓴,非常值得一读, 原文链接https://arxiv.org/abs/2305.15820。站在大佬们的肩膀上,小豆芽这里整理下相关论点以及自己的一些思考,供大家参考。
可以说在过去几十年,半导体产业在摩尔定律的推动下持续高速发展。但随着晶体管缩放尺寸逐渐逼近物理极限,半导体工艺制程的推进也越来越困难,“摩尔定律”已死的说法被越来越多的人认同。目前台积电、三星、英特尔等少数的尖端制程制造商,也只能依靠着越来越昂贵的EUV光刻机在艰难的推动半导体制程微缩,但是这依旧面临着非常多的工艺上的挑战以及成本难题。对此,科技界也希望寻找一些新的技术路径来改变目前的半导体制造困境,比如定向自组装(DSA)技术。
这篇笔记主要分享硅光芯片的一篇最新进展。英国南安普敦大学Reed研究组最近在arXiv贴出了一篇硅光的研究进展 arXiv 1807.01656, “Towards an optical FPGA - Programmable silicon photonic circuits“。基于锗离子注入的硅波导工艺和激光退火工艺,他们实现了可擦除的定向耦合器,进而实现了可编程的硅基集成光路,也就是所谓的光学FPGA。
【新智元导读】2016年诺奖化学奖授予了三位“在分子机器的设计和合成”上做出杰出贡献的科学家,他们开发出了比人类头发丝直径还要小1000倍的分子机器,而且从微型马达到微型汽车再到微型肌肉,各种类型的分子机器都有。那么,分子机器是什么?掌握了在分子层面上控制运动的技术又有什么意义?本文转自新浪科技,回顾历史,愈发凸显今后纳米机器人等人工智能技术的大有可为。 2016年度诺贝尔化学学奖刚刚揭晓!化学奖授予法国斯特拉斯堡大学的让-皮埃尔·索瓦(Jean-Pierre Sauvage)、美国西北大学的詹姆斯·弗雷泽
这篇笔记介绍下Intel在微环方面的最新进展,他们通过在微环波导中注入Ge离子,控制退火温度与时间,实现Si波导在非晶态与晶体之间的转换,从而精确控制微环的共振波长。
PLC更广为人知的是在电子技术领域,它是可编程逻辑控制器(Programmable Logic Controller)的简称。在光通信技术领域,PLC是平面光路(Planar Lightwave Circuit)的简称,它是基于集成光学技术制备的各种光波导结构,在技术上,可实现的功能性器件有方向耦合器DC、Y分支器、多模干涉耦合器MMI、阵列波导光栅AWG、光学梳状滤波器ITL、马赫-增德尔MZ电光调制器、热光可调衰减器TO-VOA、热光开关TO-SW等。
一切都是原子构成,一个简单的原子模型可以简化成带正电荷的原子核在中央,周围环绕有若干个带负电的电子。同性相斥,异性相吸。
从行业角度来看今年竞争尤为激烈,国外品牌方面,索尼在3月发布两款75吋大屏产品,LG继续扩张,推出了97吋巨幕OLED,三星同样持续加码大屏,新款TheWall电视在尺寸上,最大可以提供4K110吋或者由4块4K110吋面板组合成的8K220英寸巨幕。
制造业是立国之本、兴国之器、强国之基。随着工业4.0和中国制造2025的深度推进,各行业的制造型企业都开始跨入智能制造领域,机器人及AI视觉技术作为智能化转型的先锋,给制造业带来了全新的生产管理模式。
DeepMind研究科学家David Pfau在论文发表后感叹道:「为了分享这个时刻我已经等了很久,这是第一次在核聚变研究设备上进行深度强化学习的演示!」
现在我们的日常生活基本上离不开了LCD屏幕,手机,电脑,电视,等等。这里我们就来普及下屏幕的知识。 自Iphone4上市以来,什么IPS屏幕,什么asv屏幕,什么LG的,什么sharp定制的,然后又来
作者/ George.W 现在很多人放弃选择电动汽车的原因,是其续航或补能设备无法满足消费者需要。虽然目前电动汽车所使用的锂离子电池可以支持车辆行驶数百公里,但是充电不方便、速度慢、有安全隐患的问题依旧存在。 最近一年,关于新型电池研发的新闻层出不穷,包括固态电池、钠离子电池等等。目前各国科学家及研发机构也在寻找克服锂离子电池缺陷的解决方法,改善使用痛点。 短路的元凶究竟是谁? 锂离子电池最早由索尼在1991年推出,其原理是依靠离子在电极间运动产生能量。与传统铅酸电池相比,其效率更高,拥有大概三倍于铅酸电
在小型等离子清洗机的工作原理中,一直有两种工作原理:电容耦合式(不锈钢腔体)和电感耦合式(石英玻璃腔体),针对两种工作方式的差异,我们尝试做进一步的说明
作为光通信关键器件之一,掺铒光纤放大器(EDFA)在各种网络和应用的演进中被推动着不断往集成化、小型化、多功能、低成本方向发展。在EDFA行业高速发展背景下,很多厂商也推出了实现EDFA技术竞争优势的Hybrid集成器件。混合光无源器件是将EDFA中最重要的五大功能器件,光隔离器(Isolator)、波分复用器(WDM)、增益平坦滤波器(GFF)、耦合器(Coupler)、TAP PD(分光探测器),集成了两种或以上的多种组合功能于一个器件中,实现相同功能前提下大大的缩小了器件的尺寸以及降低了成本。本文将进一步探索EDFA以及Hybrid器件的工作原理和应用。
来源:机器之心本文约2400字,建议阅读5分钟用强化学习控制核聚变反应堆内过热的等离子体。 过去三年,DeepMind 和瑞士洛桑联邦理工学院 EPFL 一直在进行一个神秘的项目:用强化学习控制核聚变反应堆内过热的等离子体,如今它已宣告成功。 DeepMind研究科学家David Pfau在论文发表后感叹道:「为了分享这个时刻我已经等了很久,这是第一次在核聚变研究设备上进行深度强化学习的演示!」 可控核聚变、强人工智能、脑机接口是人类科技发展的几个重要方向,有关它们何时可以实现,科学家们的说法永远是「还需
今天等离子已不复存在,OLED 出现了新的竞争者。在本概述中,我们将了解这两种技术之间的差异、优缺点等。
几乎每个便携式和手持设备都包含电池。电池是一种存储设备,用于存储能量以在需要时提供电力。在这个现代电子世界中有不同类型的电池可用,其中铅酸电池通常用于高功率电源。通常铅酸电池体积较大,结构坚硬而沉重,可以存储大量能量,通常用于汽车和逆变器。
大数据文摘转载自品玩 “固态电池普及之日,就是燃油车退出历史舞台之时。” 这是多年前流传于新能源行业的一句话。大众汽车电芯中心负责人弗兰克·布洛梅甚至将固态电池称为锂离子电池的“最终篇章”,和可控核聚变民用化之前的能源设备终点。 仿佛谁能率先造出固态电池并实现其大规模商业化,谁就将获得锂电技术的“圣杯”,成为能量魔方的解密者,和全球新能源行业的霸主。 正是在这样的背景下,全球新能源从业者、分析师和投资人们都开始疯狂追逐这一方向。以 QuantumScape、Solid Power 等为代表的美国创业公司,丰
光波导是一种光学技术,在光通信、激光领域应用较多。简单的来说就是光在特定设计的材料器件结构中实现光的定向传播,应用的是全反射原理,中心用折射率大的材料,四周用折射率小的材料,就可以束缚光在介质中传播。
是指在先进工艺技术下,靠近阱边缘的器件的电特性会受到器件沟道区域到阱边界距离的影响。
目前主板控制芯片组多采用此类封装技术,材料多为陶瓷。采用BGA技术封装的内存,可以使内存在体积不变的情况下,内存容量提高两到三倍,BGA与TSOP相比,具有更小体积,更好的散热性能和电性能。
CPU是现代计算机的核心部件,又称为“微处理器”。对于PC而言,CPU的规格与频率常常被用来作为衡量一台电脑性能强弱重要指标。Intelx86架构已经经历了二十多个年头,而x86架构的CPU对我们大多数人的工作、生活影响颇为深远。
作者:啸语 作者公众号:啸语 摘自:品玩(http://www.pingwest.com) 随着微系统、全脑仿真等技术的进步,意识上传不再是遥不可及的科幻,本文介绍两种可能的意识上传技术路线。 一种路线是逐渐把生物脑的功能转移到“外皮层”,以类似于特修斯之船的方式,转变为赛博格或者说半机械人。 首先,随着脑机接口、脑植入电极以及相关理论研究的进步,用人造神经元逐步替换大脑的可能性出现。 黑石微系统(Blackrock Microsystems)开发的犹它阵列,帮助大脑之门(BrainGate)项目实现了全
增强现实技术即AR技术是将虚拟信息与现实世界相互融合,属于下一个信息技术的引爆点,据权威预测增强现实眼镜将会取代手机成为下一代的协作计算平台。以增强现实眼镜为代表的增强现实技术目前在各个行业开始兴起,尤其在安防和工业领域,增强现实技术体现了无与伦比的优势,大大改进了信息交互方式。
最近碰到个需求,需要把当前页面生成 pdf,并下载。弄了几天,自己整理整理,记录下来,我觉得应该会有人需要 :)
这篇笔记主要介绍硅光芯片在量子光学领域的应用进展。这两篇工作都是由英国布里斯托大学O' Brien研究组及其合作人员完成(该研究组最先利用硅光芯片进行量子光学领域的研究,做出了许多开创性的工作)。两篇工作基本的思路是,在硅光芯片上产生纠缠光子对,并进行纠缠态的逻辑操作与投影测量(单光子探测器在芯片外)。这两篇工作分别发表在2018年3月份的Science与2018年8月份的Nature Photonics, 由此可见其意义重大。值得一提的是,两篇文章的第一作者都是中国人,是来自北京大学与国防科大的两位老师。
当前Android 的设备多种多样,它们有着不同的屏幕尺寸和像素密度。各应用为了保证可以在各机型上展示较好的交互界面,就需要在实现阶段根据对应的尺寸单位进行兼容性开发。近期在实际项目过程中,小编接触到了一些尺寸度量单位,下面进行简单的总结。
随着移动端H5需求场景越来越多,例如微信公众号中H5页面的开发,APP中内嵌H5页面等,移动端H5开发基础知识和技巧是前端开发工程师必备的技能~
视频观看(15分钟) https://v.qq.com/x/page/b32539f3qkx.html
3月31日消息,据路透社报道,日本政府于当地时间本周五宣布,计划限制23项半导体制造设备的出口。日本政府此举被认为是跟进美国去年10月出台的针对中国的半导体设备出口管制政策。
这种新技术适用于大规模量产锂电池,且会降低当前锂电池的成本。 锂离子电池是各种设备供电的首选,现在的智能手机、电脑等设备使用的都是锂电池。伴随着设备制造厂对电池容量的极高需求,德克萨斯大学奥斯汀分校的研究人员研制出了一种新型的锂电池阳极材料,这种材料可以帮助缩小锂电池的体积,还可以将电池容量的大小提升两倍,且降低电池的成本。 影响电池容量的因素有很多,包括放电率、温度、终止电压、极板等因素,其中极板对电池容量的影响最大,因为极板的几何尺寸、厚度、高度和面积都会对其造成影响。而且,目前大规模生产的锂离子电池都
锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌,充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
领取专属 10元无门槛券
手把手带您无忧上云