"用户数据视图" 概念 : 在数据分析时 , 用于面向分析的数据模型 , 用于为分析人员提供 多种观察数据的视角 , 和 面向分析的操作 ;
对于下图的房屋平面图来说,我们基本看一眼就能知道这是一个三室两厅两卫的房子,有一个玄关和一个阳台,哪里是门,哪里是墙,哪里是窗户,每个房间的平米数是多少,全部都用各种符号表示得一清二楚。
之前分享了关于数据中台建设之思考和关于中台建设之思考,数据中台建设要考虑三个方面,一是前沿IT技术之储备,二是对业务的掌握程度,三是数据建模方法。
备注,本章是面向数据领域的一篇专业文章,涉及较前一章节更为专业术语,阅读对象适合有一定数据基础的读者。阅读完大约需要12 分钟左右; 前言,”数据模型“只要是跟数据沾边就会出现的一个词,在数据库设计、
需求分析:调查了解用户的需求;用数据流图和数据字典来分析表达用户需求(结构化分析方法),以数据流图和数据字典作为这个阶段的成果;
结构化需求分析是软件工程中的一种需求分析方法,主要目的是识别用户的需求,并将这些需求转化为软件系统的详细规格说明。结构化需求分析通常包括功能模型、行为模型和数据模型三个部分,每个部分针对系统的不同方面进行详细的描述。
提到企业数字化转型,不得不提现在的一个主流观点:未来的企业必将成为数字化企业,每个公司都将会成为软件公司!未来企业增长和竞争的能力越来越取决于其数字化创新能力。为了应对企业数字化转型,企业IT架构采用分布式、微服务、移动化、大数据等技术来应对业务变化带来的挑战。
数据库设计是指:根据用户的需求,在数据库管理系统上(比如:MySQL、Oracle),设计数据库的结构和建立数据库的过程。
数据模型的定义:数据模型是抽象描述现实世界的一种工具和方法,是通过抽象的实体及实体之间联系的形式,来表示现实世界中事务的相互关系的一种映射。读起来有些拗口,可以简单理解为描述实体及关系的一个方法。
【商务智能】数据预处理 【商务智能】数据仓库 ( 多维数据模型 | 多维数据分析 )
所有这些数据库设计术语都可能令人困惑。在这篇短文中,我将试着解释它们是什么以及它们之间的区别。
继 PowerBI DAX MVC 设计模式 导论 引发了很多会员伙伴的询问,希望罗叔给出一个相对完整和复杂的案例来体会 MVC 架构和设计模式的作用。
各位好,今天和大家分享“大数据资产管理实战”这个课题。 本次分享包括大数据资产管理的概述、方法论和实施效果三个部分的内容。 · · · 第一部分:大数据资产管理概述 提到企业数字化转型,不得不提现在的
本文档为数据建模与设计部分笔记,思维导图与知识点整理。共分为6个部分,由于页面显示原因,部分层级未能全部展开。结构如下图所示。
首先,用于支持决策,面向分析型数据处理;其次,对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。
第一,注意不要和Power Query的数据操作混淆,在Power Query里做了数据筛选,最后得到的数据是筛选后的结果,因为Power Query就是针对数据本身进行处理的(PQ其实也不删除数据,只是你习惯性的只使用筛选后的数据结果而已)。
如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作电脑文件和文件夹,我们希望按照自己的习惯有很好的文件夹组织方式,而不是糟糕混乱的桌面,经常为找一个文件而不知所措。
前面的文章中我们分析了企业战略、理清了组织结构,是不是就该进入业务分析了呢?先别急,业务分析,特别是对于具有多个不同业务线的企业而言,是一种垂直式的分析,如果直接开始业务分析,那就走上了竖井式开发的老路,就算有共同的战略目标,也未必建得出企业级的业务架构和业务系统来。业务架构强调的是横向视角,强调通观整个企业的生产过程,因此,展开垂直的业务分析之前,我们必须先确立一个统一的业务分析框架做为观察各个业务线的统一方法,这样才能将企业需要的业务能力进行分类汇集,产生合理的组件结构。
Preface:本文将会讲述 BI/DW/DA 领域的一些常见概念,如:事实表、维度表、建模、多维分析、cube 等,但不涉及具体实例分析。 1、维(Dimension) 维是用于从不同角度描述事物特
前文讲了数据架构、数据建模、主题域、概念模型和逻辑模型,到底数据仓库(含数据中台和大数据平台)中应该如何建模呢?
本文介绍数据建模的基础方法论,并通过建模实例的建模实践,输出对模型结构、设计模式的经验技巧与自我理解。
今天我们来介绍一下工作开发中常见的一些NoSQL数据库及其基本特点。欢迎在评论区留下文章中没有介绍且好用的NOSQL数据库🤞。
“在数字化转型的浪潮下,数据架构备受关注。作为企业架构中的关键纽带,数据架构解决了业务与数据的映射,规范了应用架构的数据集成关系,指导了技术架构的技术选型。伴随DataOps等场景的出现,数据架构会逐步走向数据消费端,为企业带来更多的变化和新发现。
本文将会讲述 BI/DW/DA 领域的一些常见概念,如:事实表、维度表、建模、多维分析、cube 等,但不涉及具体实例分析。
开发人员在日常工作中,参与PRD评审、听产品经理讲述用户故事、提出各种需求。评审结束,一般会一股脑投入到设计开发,而数据库表设计就是其中不可或缺的一个过程。对于熟悉的业务模块,通过对需求分析,可以轻而易举的完成数据表设计,但对于非熟悉业务领域,可能会经过多轮PRD分析,整理一套数据表结构基础,然后对其追加字段,就完成了基础的数据模型设计。而在这个过程中,往往会感觉没有可以参考的理论,有时候甚至对设计的数据库表产生怀疑,不断考虑此设计是否符合业务、表结构设计后期是否具有通用性、表之间关系是否恰当可扩展等等。今天来谈些在实际业务开发中,针对数据建模的一些思考。
开始数据模型设计,一般通过分析业务需求就可以提取出需要建立的节点和关系,然后使用节点和关系画出框图,即可完成数据模型的设计。下面通过两个实例来简要说明数据模型的设计过程。
知足知不足,有为有不为 数据透视图可以说是数据透视表的孪生兄弟,它们的设计原理及使用方法基本一致。所以我们在之前学习的关于数据透视表的知识基本都能应用到数据透视图中。 数据透视表与数据透视图,其实是一组数据的不同展现方式。以下关于Power Pivot与数据透视图的3个实用技巧值得我们学习掌握。 一、从数据模型到数据透视图 在Excel中制作图表,通常情况下是基于工作表中现有的数据的,也就是图表基于工作簿中的数据表生成。即使是使用数据透视图,也会同时生成数据透视表,然后再基于数据透视表的数据作图。 这
数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。其实数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。因此数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层——源数据、数据仓库、数据应用:
微软用几年的弯路摸索出自助商务智能的最终产品路线,PowerBI 自然而然地来了。另外,如果您正从零(或者具备一定Excel基础)开始希望学习自助BI,也可以对照看目前所处的位置以更清晰学习上升的路线。
一、数据库设计步骤 1、用户需求分析,使用一定的辅助工具对应用对象的功能、性能、限制等进行科学分析 2、概念结构设计,是对信息的分析和定义,如视图模型化、视图分析和汇总,理想工具是E-R图 3、逻辑结构设计,将抽象的概念模型转化为与选用的DBMS产品所支持的数据模型相符合的逻辑模型,是物理结构设计的基础,包括模式初始设计、子模式设计、应用程序设计、模式评价以及模式求精 4、物理结构设计,是逻辑模型在计算机中的具体实现 5、数据库实施阶段 6、数据库运行和维护阶段
很多小伙伴要求讲一下数据模型的多种形态。这是一个很重要很重要的问题,我们必须通过实际的案例来说明,在具体展开的时候,本文先从一个宏观视角来解释数据模型为什么那么重要以及它的形态,以及和传统认知中的不同。
本文由CDA数据分析研究院翻译,译者:王晨光,转载必须获得本站、原作者、译者的同意,拒绝任何不表明译者及来源的转载! 在过去的三十年,ERP,CRM和Analytical等分析系统已经发展。但是这些系统储存数据的方式并没有变化。事实上,在这三十年,ERP,CRM和分析系统存储数据的方式没有任何改变。 一般来说,现代的ERP和CRM系统是基于一个已经用了30多年的数据模型,这个模型叫作OLTP,代表的是On Line转换程序。 一般来说,现代Analytical系统是基于一个已经用了30多年的数据模型,叫OL
企业架构包括多种不同类型,如包括业务架构、数据架构、应用架构和技术架构等。其中数据架构的主要目标是有效地管理数据,以及有效地管理存储和使用数据的系统。
最近听到大家说的最多的话就是,在工作中总是没有数据分析思路,我应该怎么办呢?今天就来给大家分享一下,如何锻炼自己的数据思维,还有实例模型讲解哦~
什么是数据模型 为什么需要数据模型 如何建设数据模型 最后,我们在本文的结尾给大家介绍了一个具体的数据仓库建模的样例,帮助大家来了解整个数据建模的过程。
数据建模就是通过减低数据库设计的复杂度得到各个方面都能理解的数据抽象,包括定义实以及它们之间的关系。接下来学习数据建模的基本概念以及数据模型的发展过程。
最近几年,Data Engineer 作为一个新职位在互联网公司招聘中反复出现,很多朋友申请拿到面试后也一头雾水,不知道如何准备。究竟 Data Engineer 和 Software Engineer / Business Analyst 是不是一回事儿?小编最近恰好有一次和某 Data Engineer 组的 Team Lead 聊到这个话题,第一手资料分享给大家。 背景介绍 互联网的一个产品定律是,成功的产品必须能迅速点燃用户增长。当年的 Facebook, 现在的 UAP, 都曾带着炫酷的光环风靡主
2、为什么需要数据模型:数据模型不是必需的,建模的目的是为了改进业务流程、消灭信息孤岛和数据差异及提升业务支撑的灵活性。
该数据分类架构在ODS层分为三部分:数据准备区、离线数据和准实时数据区。在进入到CDM层后,由以下几部分组成:
doris是一个基于mpp(massively parallel processing,即大规模并行处理)的交互式sql数据仓库,是一个面向多种数据分析场景的,兼容mysql协议的,高性能的,分布式关系型列式数据库,用于报告和分析。
在创建或改进数据治理程序时,数据建模过程发挥着越来越重要的作用。数据治理变得极其复杂,数据建模的使用促进了理解。复杂性增加的一个基本原因是出于研究目的对数据分析的广泛使用。另一个原因是遵守为互联网业务制定的法律法规。
NoSQL(Not Only SQL)数据库是一类非关系型数据库,它是一种不依赖于传统关系型数据库管理系统(RDBMS)的数据库管理系统。NoSQL数据库的设计目标是解决传统数据库在大规模、高并发、分布式等方面的一些问题,并提供更灵活的数据模型。以下是对NoSQL数据库的详细介绍。
导读:无论是关系型数据库还是非关系型数据库,都是某种数据模型的实现。本文将为大家简要介绍5种常见的数据模型,让我们来追本溯源,窥探现在流行的数据库解决方案背后的神秘世界。
如果有人问起,“L,对于编程,你最后悔的一件事情是什么?”我只能回答:“数据结构”。
图数据库是一种用于存储和查询图结构数据的数据库管理系统,它可以有效地处理复杂的关系网络。在识别最终受益人方面,图数据库可以发挥重要作用。下面是其应用原理的描述:
如果某个数据模型已经预先建立并发布到云端运行,用户在使用该模型时,额外关联了模型外的数据,就形成混合模型。
领取专属 10元无门槛券
手把手带您无忧上云