:ER 模型、维度模型、Data Value、Anchor ER 模型: 出发点是整合数据,为数据分析决策提供服务 需要全面了解业务和数据 实施周期长 对建模人员能力要求高 维度模型: 为分析需求服务...[外链图片转存中…(img-uQis5F2c-1645262440294)] 范式 第一范式:属性不可分割 第二范式:消除不分函数依赖 第三范式:消除传递依赖 关系建模与维度建模 关系建模:将复杂的数据抽象为两个概念...维度建模:模型相对清晰、简洁。维度模型以数据分析作为出发点,不遵循三范式,故数据存在一定的冗余。维度模型面向业务,将业务用事实表和维度表呈现出来。 4....数仓建模方法 ODS: 数据类型:用户行为数据、业务数据 规划处理 保持数据源不做修改,起到备份数据的作用 数据采用压缩,减少磁盘存储空间 创建分区表,防止后续的全表扫描 DWD: DWD层需构建维度模型...维度建模一般按照以下四个步骤:选择业务过程→声明粒度→确认维度→确认事实。
作为维度建模的核心,我们在企业级的数据仓库中必须保证维度的唯一性。以淘宝商品维度为例,我们有且只允许有一个维度定义。 第二步:确定主维度表。...二、第二部分 在Kimball维度建模中,通常将度量称为“事实”,将环境描述为“维度”,维度是用于分析事实所需要的多样环境。...(3)同一类数据基于范式建模,拆分成同一类型数据库中多张的物理表,比如商品,有商品主表和商品扩展表,商品主表存商品基本信息;商品扩展表存储商品特殊信息,如不同产品线定制化的信息等;比如会员,有会员主表和会员扩展表...02 快照维表 维度的基本概念中介绍了自然键和代理键的定义,在Kimball的维度建模中,必须使用代理键作为每个维度表的主键,用于处理缓慢变化维度。...但在阿里巴巴数据仓库建设的实践过程中,虽然我们使用的是Kimball的维度建模的理论,但实际并未使用代理键。我们是如何处理缓慢变化维度,如何记录变化历史的呢?为什么不使用代理键呢?
今天给大家分享一下 数据开发工作中数据建模的步骤, 第一步:选择模型或者自定义模型 这第一步需要我们基于业务问题...如果没有现成的模型可用,就需要我们自定义模型了,自定义模型不是一件容易的事情,需要非常nb的数学基础和科研精神,当前绝大多数人所谓的建模,都只是选择一个已有的数学模型来工作而已。...这一步,就需要将可用的模型开发出来,并部署在数据分析系统中,然后可以形成数据分析的模板和可视化的分析结果,以便实现自动化的数据分析报告。 应用模型,就是将模型应用于真实的业务场景。...构建模型的目的,就是要用于解决工作中的业务问题的,比如预测客户行为,比如划分客户群,等等。...实际上,模型优化不仅仅包含了对模型本身的优化,还包含了对原始数据的处理优化,如果数据能够得到有效的预处理,可以在某种程度上降低对模型的要求。
PowerDesigner安装 云盘地址:https://pan.baidu.com/s/1MZnQhPZ6ityza9N9nAD3bw 提取码:8qpi 傻瓜式安装 E-R图 E-R图(实体关系图) 1.创建模型...生成数据库脚本 ? ? ? ? ?
Java语言尤其显得突出,难怪有些人就把问题归结于Java语言本身,睡不着觉怪床歪,又为了面子问题,说自己转向.NET,实际上是在 回避自己的问题和弱点。...本文重点主要是比较OO建模和数据表建模两者特点,这两者我们已经发现属于两个不同方向,也就是说,属于两个完全不同的领域,在J道其他文章里我们 其实已经把这两个领域上升为不同的学科,数据表建模属于数学范畴思维...因为方法的不同,软件路线也就存在下面几个路线:完全面向对象类建模路线(J道网站和笔者一直致力于这种路线的推介); 一种是对象和关系数据库混合型,还有一种就是过去的完全关系数据库类型软件(如Foxpro/...最后,我们必须认识到:对象和关系数据库存在阻抗,本身是矛盾竞争的,他们是两种分析看待需求的流派,可以说是水火不容, 要么你采取数据库分析设计以及过程化编程,要么完全采取OO,现在使用.NET和Java这样...领域建模属于与具体.NET或Java技术无关的设计思想,有人总是说:.NET比Java简单,其实这又是一个大误区,如果都达到同样设计水准,无论使用.NET或Java,都需要付出同样的努力;那为什么有人觉得
数据模型 所谓水无定势,兵无常法。不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的。...在开始介绍数据模型之前,我们先看一个东西,那就是算法与数据结构,我们知道算法是解决特定问题的策略,数据结构处理问题的数学模型,数据结构 有三大要素,逻辑结构、存储结构、数据操作、这里的数据操作其实就是算法...,例如我们定义的图的数据结构,然后在这个基础上对图进行操作形成特定的算法,例如深度遍历和广度遍历;我们的数据结构其实是针对特定的数据问题而抽象和设计的,也就是说一种数据结构针对的是一类特定的问题。...数据模型也一样,只不过数据结构是针对特定问题的,而数据模型是针对特定业务的,然后多业务进行抽象,形成了行业特征,在银行业,IBM 有自己的 BDWM(Banking data warehouse model...数据仓库的设计始于数据模型,企业的数据模型适用于操作型环境,而修改后的模型适用于数仓,其实就是业务模型—> 概念模型—>逻辑模型—>物理模型的这一过程 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人
数据挖掘是基于统计学原理,利用机器学习中的算法工具实现价值信息的发现。机器学习是一种实现人工智能的方法,深度学习是实现机器学习的一种技术。 ?...非线性分类经典算法包括K近邻(KNN)、支持向量机(SVM)、决策树(D Tree)、朴素贝叶斯(NB) 2、回归分析:反映事务数据属性在时间上的特征,预测数据间的相关关系,与分类区别在于,分类是预测目标的离散变量...二、无监督学习(事先没有任何训练数据样本,需要直接对数据进行建模,即不提供经验和训练样本,完全靠自己摸索) 1、关联分析:描述数据库中数据之间存在关系的规则。...2、聚类分析:训练样本标签信息未知,通过学习揭示数据内在性质及规律。 典型算法:K均值算法(K-means)、DBSCAN(具有噪声的基于密度的聚类方法)。 三、沃尔玛经典营销案例:啤酒与尿布 ?...模型发现:20世纪90年代的美国沃尔玛超市中,管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中。
MongoDB是一种面向Document的NoSQL数据库,如果我们还是按照RDB的方式来思考MongoDB的数据建模,则不能有效地利用MongoDB的优势;然而,我们也不能因为Document的灵活性...适度的建模是非常有必要的,尤其对于相对复杂的关联关系。因为在MongoDB中,处理这种关联关系既可以使用Link,也可以使用Embedded。...这种建模方式还带来另一种可能,就是原本Person->Tasks的one-to-N关系就可以变为N-to-N关系,因为一个Task可以被多个Person所拥有。...如果采用Embedded方式,则会导致Task数据的冗余。...one-to-few one-to-many one-to-squillions 但我认为该怎么实现关联,应该从Entity之间的领域关系来判断,我们可以引入DDD的Aggregation设计概念作为建模的依据
1)定义:在设计数据库时,对现实世界进行分析、抽象、并从中找出内在联系,进而确定数据库的结构,这一过程就称为数据库建模。 2)作用: 1. 模型能准确表达设计意图,更易于进行技术交流。 2....3)数据库建模步骤: 1.需求分析阶段 2.概念结构设计阶段:CMD 概念结构设计是整个数据库设计的关键。...3.逻辑数据模型:LDM 需要考虑数据的存储结构,是关系的还是面向对象的。对数据进行符合数据库设计范式的规范,但不关心物理数据库。...概念模型是把现实世界中实体和关系抽象到计算机世界,逻辑模型就是一种跟具体数据库无关的数据库模型,而物理模型是对某一款确定的数据库进行设计的数据库模型。...所以在数据库开发当中,先进行概念建模,然后进行逻辑建模,再而才进行物理模型的建模。
一、什么是ETL ETL是数据抽取(Extract)、转换(Transform)、加载(Load )的简写,它是将OLTP系统中的数据经过抽取,并将不同数据源的数据进行转换、整合,得出一致性的数据,然后加载到数据仓库中...二、数据仓库的架构 数据仓库(Data Warehouse \ DW)是基于OLTP系统的数据源,为了便于多维分析和 多角度展现将其数据按特定的模式进行存储而建立的关系型数据库,它不同于多维数据库,数据仓库中的数据是细节的...主题要体现某一方面的各分析角度(维度)和统 计数值型数据(量度),确定主题时要综合考虑,一个主题在数据仓库中即为一个数据集市,数据集市体现了某一方面的信息,多个数据集市构成了数据仓库。...事 实数据表是数据仓库的核心,需要精心维护,在JOIN后将得到事实数据表,一般记录条数都比较大,我们需要为其设置复合主键和索引,以为了数据的完整性和 基于数据仓库的查询性能优化,事实数据表与维度表一起放于数据仓库中...增量数据文件:数据文件的内容为数据表的增量信息,包含表内新增及修改的记录。 全量数据文件:数据文件的内容为数据表的全量信息,包含表内的所有数据。
应用层模型由各应用按需自行建设,其中基础数据模型一般采用ER模型,融合数据模型采用维度建模思路。...三、两种经典的数据仓库建模方法 前面的分层设计中你会发现有两种设计方法,关系建模和维度建模,下面分别简单介绍其特点和适用场景。...维度建模以分析决策的需求出发构建模型,构建的数据模型为分析需求服务,因此它重点解决用户如何更快速完成分析需求,同时还有较好的大规模复杂查询的响应性能,更直接面向业务。...运营商以前都是关系建模,现在其实边界越来越模糊,很多大数据业务变化很快,采用维度建模也比较方便,不需要顶层设计。...四、企业建模的三点经验 维度建模就不说了,只要能理解业务过程和其中涉及的相关数据、维度就可以,但自顶向下的关系建模难度很大,以下是关系建模的三个建设要点。
MongoDB是一个基于文档模型的NoSQL数据库,它的数据建模与传统的关系型数据库有很大的不同。在MongoDB中,数据是以文档的形式存储的,文档是一种类似于JSON的数据格式,非常灵活和扩展。...集合中的每个文档都可以有不同的结构,不同于传统数据库中表中的行,它们可以有不同的列和数据类型。...以下是一些关键的设计考虑因素:数据的一致性在MongoDB中,数据的一致性需要通过应用程序来保证。在设计文档模式时,需要确保每个文档都包含完整的数据,以避免应用程序在查询时需要多次访问数据库。...在将数据分布到多个节点时,需要确保数据的相关性。通常可以将数据根据其相关性分组到同一个集合中,这样可以避免在查询时需要访问多个集合。此外,还可以考虑使用分片(sharding)来分散数据负载。...这种设计方式可以减少重复数据,同时也可以提高查询性能和数据一致性。
只需将数据存储进去并通过键访问数据即可。同时我们还学习了使用过期功能来存储与时间相关的数据。...从键/值存储的简单模型开始,我们开始考虑真实的文档模型,学习了如何构建嵌入值来存储本质上是文档一部分的数据,还研学习了如何对关系和集合、多对一和多对多关联进行建模。...然后,我们介绍了更高级的建模技术,例如如何处理引用和配置数据,以及如何处理时态信息和分层结构。 接下来,我们讨论了建模时必须考虑的一些约束,例如如何处理文档的增长以及RavenDB中文档的良好大小。...我们学习了并发控制以及变化向量如何用于乐观并发和缓存,并且学习了为什么我们应该避免在模型中缓存聚合数据。...然后我们学习了如何处理带有附件的二进制数据,以及使用修订功能进行审计和更改跟踪,并且了解了我们可以在 RavenDB 中如何让文档数据过期。简要介绍了索引和查询时的引用处理。
为什么要数据仓库建模呢?...但这个问题又很重要,因为有标杆认识到差距才能进步,有伙伴邀笔者去讲讲数据建模,说实话,笔者也不知道怎么讲,因为这个跟企业自己的业务和数据太相关了,所谓的业界的标准建模理论和方法也变得无足轻重。...Inmon的ER建模优点体现在规范性较好,冗余小,数据集成和数据一致性方面得到重视,适用于较为大型的企业级、战略级的规划,但缺点是需要全面了解企业业务、数据和关系,对于建模人员要求很高,实施周期非常长,...但Inmon和kimball关于关系建模和维度建模的争论其实也没什么值得探讨的,没有谁更好,在企业内,这两种建模方式往往同时存在,底层用关系建模合适一点,技术的优雅换来了数据的精简,往上维度建模更合适一些...在数据建模上,很多人纠结于如何建模,用关系建模、维度建模亦或其它?
怎么组织才能使得数据的使用最为方便和便捷? 怎么组织才能使得数据仓库具有良好的可扩展性和可维护性? Ralph Kimball 维度建模理论很好地回答和解决了上述问题。...维度建模理论和技术也是目前在数据仓库领域中使用最为广泛的、也最得到认可和接纳的一项技术。...今天我们就来深入探讨 Ralph Kimball 维度建模的各项技术,涵盖其基本理论、一般过程、维度表设计和事实表设计等各个方面,也为我们后面讲Hadoop 数据仓库实战打下基础。...维度建模关键概念 度量和环境 维度建模是支持对业务过程的分析,所以它是通过对业务过程度量进行建模来实现的。 那么,什么是度量呢?...维度建模一般过程 维度建模一般采用具有顺序的 个步骤来进行设计,即选择业务过程、定义粒度、确定维度和确定事实。 维度建模的这 个步骤贯穿了维度建模的整个过程和环节,下面逐一介绍。 1.
1.数据仓库建模的目的? 为什么要进行数据仓库建模?大数据的数仓建模是通过建模的方法更好的组织、存储数据,以便在 性能、成本、效率和数据质量之间找到最佳平衡点。...数据质量:改善数据统计口径的不一致性,减少数据计算错误 的可能性,提供高质量的、一致的数据访问平台 2.常见的数据建模方法 数据仓库本质是从数据库衍生出来的,所以数据仓库的建模也是不断衍生发展的。...但是对于数据仓库来说,目前主流还是维度建模,会夹杂着范式建模。 数据仓库建模方法论可分为:范式建模、维度建模、Data Vault模型、Anchor模型。...性别,学历等) 画出E-R关系图 3.2.维度建模 维度建模,是数据仓库大师Ralph Kimball提出的,是数据仓库工程领域最流行的数仓建模经典。...维度建模是面向分析的,为了提高查询性能可以增加数据冗余,反规范化的设计技术。 Ralph Kimball提出对数据仓库维度建模,并且将数据仓库中的表划分为事实表、维度表两种类型。
简介MongoDB是一种面向文档的数据库,因此在进行数据建模时,其与传统的关系型数据库有所不同。MongoDB支持多种数据关系建模方法,包括嵌入式数据模型和引用式数据模型。...数据关系建模MongoDB中的数据关系建模方法包括嵌入式数据模型和引用式数据模型。嵌入式数据模型在嵌入式数据模型中,一个文档可以包含另一个文档。这种关系称为嵌入式关系。...使用MongoDB数据关系建模的最佳实践以下是在使用MongoDB数据关系建模时的一些最佳实践:使用嵌入式数据模型时,考虑嵌套层数的问题。通常情况下,不建议超过嵌套3层,否则可能会影响查询性能。...当数据需要在多个文档中共享时,使用引用式数据模型可以更好地管理数据。例如,一个订单可能需要关联到多个客户和产品,这时使用引用式数据模型会更加方便。在使用引用式数据模型时,需要仔细考虑引用文档的结构。...引用文档的结构应该尽量简单,以便于使用简单的查询来检索相关数据。在使用引用式数据模型时,可以使用MongoDB的聚合框架来联接多个文档。
学习目标:应用 在scrapy项目中进行建模应用 构造... 请注意,本文编写于 1724 天前,最后修改于 993 天前,其中某些信息可能已经过时。...学习目标: 应用 在scrapy项目中进行建模 应用 构造Request对象,并发送请求 应用 利用meta参数在不同的解析函数中传递数据 1....数据建模 通常在做项目的过程中,在items.py中进行数据建模 1.1 为什么建模 定义item即提前规划好哪些字段需要抓,防止手误,因为定义好之后,在运行过程中,系统会自动检查 配合注释一起可以清晰的知道要抓取哪些字段...,没有定义的字段不能抓取,在目标字段少的时候可以使用字典代替 使用scrapy的一些特定组件需要Item做支持,如scrapy的ImagesPipeline管道类,百度搜索了解更多 1.2 如何建模 在...pycharm标记的错误 python中的导入路径要诀:从哪里开始运行,就从哪里开始导入 1.4 开发流程总结 创建项目scrapy startproject 项目名 明确目标:在items.py文件中进行建模
我们在实践中通常会遇到的数据类型包括结构化数据,图片数据,文本数据,时间序列数据。...我们将分别以titanic生存预测问题,cifar2图片分类问题,imdb电影评论分类问题,国内新冠疫情结束时间预测问题为例,演示应用Pytorch对这四类数据的建模方法。...本篇我们示范cifar2图片数据建模流程。...第二种方法是读取用户自定义数据集的通用方法,既可以读取图片数据集,也可以读取文本数据集。 本篇我们介绍第一种方法。...:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器(nn.Sequential,nn.ModuleList,
本文将用户数据划分为静态信息数据、动态信息数据两大类。 ? 静态信息数据 用户相对稳定的信息,如图所示,主要包括人口属性、商业属性等方面数据。...这类信息,自成标签,如果企业有真实信息则无需过多建模预测,更多的是数据清洗工作,因此这方面信息的数据建模不是本篇文章重点。...3.3 数据建模方法 下面内容将详细介绍,如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个要素。...上述模型权重值的选取只是举例参考,具体的权重值需要根据业务需求二次建模,这里强调的是如何从整体思考,去构建用户画像模型,进而能够逐步细化模型。...内容地址、行为类型、时间衰减,决定了权重模型是关键,权重值本身的二次建模则是水到渠成的进阶。模型举例偏重电商,但其实,可以根据产品的不同,重新定义接触点。
领取专属 10元无门槛券
手把手带您无忧上云