前段时间整理了DSMM的一系列内容,已经介绍和分享了三个部分,分别为DSMM开篇的总结与交流、数据采集安全、数据传输安全。
数据访问控制是零信任的最后环节和终极目标。基于零信任的数据访问控制,已经成为数据安全保护和治理的新方法。
数据作为一种资产,若少了存储,就成了无根之木,失去了后续挖掘的价值。在小数据时代,受存储容量与CPU处理能力限制,在现在看来相当小的数据,在当时其实也可以认为是“大数据”了。正如在蒸汽机时代,创造了时速126英里(203公里)纪录的Mallard蒸汽火车就可以被视为极速火车了。那么,为何在当时没人提出Big Data概念,得到业界关注并催生出一波数据浪潮呢? Big Data概念是1998年由SGI首席科学家John Masey在USENIX大会上提出的。他当时发表了一篇名为Big Data and the
随着数据在企业发展中发挥着愈发重要的作用,如何更高效、简洁地利用数据成为用户非常关心的问题。数据虚拟化技术,正是面向此类问题的一种解决方法。本文通过近期阅读的数据虚拟化一书,提纲挈领谈谈对数据虚拟化的认识。
数据存储涉及到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式、数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的select查询,update修改,delete删除,insert插入的基本结构和读取入手。
大数据存储不是一类单独的产品,它有很多实现方式。EMC Isilon存储事业部总经理杨兰江概括说,大数据存储应该具有以下一些特性:海量数据存储能力,可轻松管理PB级乃至数十PB的存储容量;具有全局命名空间,所有应用可以看到统一的文件系统视图;支持标准接口,应用无需修改可直接运行,并提供API接口进行面向对象的管理;读写性能优异,聚合带宽高达数GB乃至数十GB;易于管理维护,无需中断业务即可轻松实现动态扩展;基于开放架构,可以运行于任何开放架构的硬件之上;具有多级数据冗余,支持硬件与软件冗余保护,数据具有高可靠性;采用多级存储备份,可灵活支持SSD、SAS、SATA和磁带库的统一管理。 通过与中国用户的接触,杨兰江认为,当前中国用户最迫切需要了解的是大数据存储有哪些分类,而在大数据应用方面面临的最大障碍就是如何在众多平台中找到适合自己的解决方案。 EMC针对不同的应用需求可以提供不同的解决方案:对于能源、媒体、生命科学、医疗影像、GIS、视频监控、HPC应用、某些归档应用等,EMC会首推以Isilon存储为核心的大数据存储解决方案;对于虚拟化以及具有很多小文件的应用,EMC将首推以VNX、XtremIO为核心的大数据存储解决方案;对于大数据分析一类的应用需求,EMC会综合考虑客户的具体需求,推荐Pivotal、Isilon等一体化的解决方案。在此,具体介绍一下EMC用于大数据的横向扩展NAS解决方案——EMC Isilon,其设计目标是简化对大数据存储基础架构的管理,为大数据提供灵活的可扩展平台,进一步提高大数据存储的效率,降低成本。 EMC Isilon存储解决方案主要包括三部分:EMC Isilon平台节点和加速器,可从单个文件系统进行大数据存储,从而服务于 I/O 密集型应用程序、存储和近线归档;EMC Isilon基础架构软件是一个强大的工具,可帮助用户在大数据环境中保护数据、控制成本并优化存储资源和系统性能;EMC Isilon OneFS操作系统可在集群中跨节点智能地整合文件系统、卷管理器和数据保护功能。 杨兰江表示,企业用户选择EMC Isilon的理由可以归纳为以下几点。第一,简化管理,增强易用性。与传统NAS相比,无论未来存储容量、性能增加到何种程度,EMC Isilon的安装、管理和扩展都会保持其简单性。第二,强大的可扩展性。EMC Isilon可以满足非结构化数据的存储和分析需求,单个文件系统和卷中每个集群的容量为18TB~15PB。第三,更高的处理效率,更低的成本。EMC Isilon在单个共享存储池中的利用率超过80%,而EMC Isilon SmartPools软件可进一步优化资源,提供自动存储分层,保证存储的高性能、经济性。第四,灵活的互操作性。EMC Isilon支持众多行业标准,简化工作流。它还提供了API可以向客户和ISV提供OneFS控制接口,提供Isilon集群的自动化、协调和资源调配能力。 EMC Isilon大数据存储解决方案已经在医疗、制造、高校和科研机构中有了许多成功应用。
随着应用规模的不断扩大,单一 Redis 实例往往难以满足海量数据存储和高并发访问的需求。Redis 分区技术应运而生,通过将数据分布在多个 Redis 实例上,实现了数据的水平扩展,从而提高了系统的可扩展性和性能。本文将深入探讨 Redis 分区的原理、策略以及实现方法,通过具体案例展示如何在实际场景中应用分区技术,以达到优化数据存储和查询的目的。
2015年初,我们计划为开发团队搭建一套全新的部署平台,在此之前我们使用的是Amazon EC2。
2015年初,我们计划为开发团队搭建一套全新的部署平台,在此之前我们使用的是Amazon EC2。 尽管AWS-based steup我们一直用得很好,但使用自定义脚本和工具自动化部署的设置,对于运维以外的团队来说不是很友好,特别是一些小团队——没有足够的资源来了解这些脚本和工具的细节。这其中的主要问题在于没有“部署单元(unit-of-deployment)”,该问题直接导致了开发与运维之间工作的断层,而容器化趋势看上去是一个不错的方案。 如果你还没有做好将Docker和Kubernetes落地
BinaryCookieReader.py (用法: 将cookie文件导出到PC端,python BinaryCookieReader.py [cookies.binarycookies-file-path])
这一节,来认识下大数据的技术框架有哪些,它们分别用于解决哪些问题?它们的内在逻辑和适用场景有哪些?OK,一起去探索下。
在当今数字化时代,数据量不断增长,对于存储系统提出了更高的要求。传统的存储方式已经难以满足大规模数据的存储和管理需求,因此,对象存储(Object Storage)应运而生。对象存储是一种面向海量数据的存储架构,以其高扩展性、弹性存储、高性能和简单管理等特点,成为了云计算、大数据分析和企业数据管理中的重要组成部分。
数据存储功能模块支持自动或手动将实时数据寄存器值存储到数据库, 并支持导出为 Excel文件功能。
一图胜千言。数据流图(DFD)是可视化系统中信息流的传统方法。一个整洁而清晰的DFD可以图形化地描述大量的系统需求。它可以是手动的,自动的,或者两者的结合。
数据仓库(Data Warehouse,DW):始于 20 世纪 80 年代,发展于 20 世纪 90 年代,后与商务智能(Business Inteligence,BI)作为业务决策主要驱动力协同发展。赋能组织将不同来源的数据整合到公共的数据模型,整合后的数据能为业务运营提供洞察,为企业决策支持和创造组织价值开辟新的可能性。
作者:Christian Posta 译者:月满西楼 原题:Advanced Traffic-shadowing Patterns for Microservices With Istio Service Mesh 全文5000字,阅读约需要12分钟 这两年, 微服务架构火了,它在实现某些功能上速度更快,为我们节省了不少宝贵时间[1]。然而,我们不能只是简单地追求速度,破旧立新[2]。还要设法降低变革带来的风险,更安全地将微服务引入生产。一个强有力的模式就可以做到,它能将有关生产的shadow traf
今天为大家推荐一些翻译整理的大数据相关的学习资源,希望能给大家带来价值。
列存储是当今大数据处理和存储领域中经常被讨论的话题,有数百种格式、结构和优化方式可用于存储数据,甚至还有更多的检索方式,具体取决于计划如何使用这些数据。这种众多选项的出现,是由于不仅需要使用在线事务处理(OLTP)工具快速地摄入数据,而且需要使用在线分析处理(OLAP)工具更高效地消耗和分析数据。
近日获悉,腾讯云对象存储COS正式通过Veeam备份软件标准化测试,携手为用户提供云上数据存储服务。
"鹅厂网事"由深圳市腾讯计算机系统有限公司技术工程事业群网络平台部运营,我们希望与业界各位志同道合的伙伴交流切磋最新的网络、服务器行业动态信息,同时分享腾讯在网络与服务器领域,规划、运营、研发、服务等层面的实战干货,期待与您的共同成长。 网络平台部以构建敏捷、弹性、低成本的业界领先海量互联网云计算服务平台,为支撑腾讯公司业务持续发展,为业务建立竞争优势、构建行业健康生态而持续贡献价值! 随着互联网的快速发展,网络化已经深入到人们的方方面面,随之而来的是各类涉密敏感数据几何倍的增长。而近年来信息安全事件频频发
数据流图(DFD)是一种图形化的系统分析和设计工具,它用以描述系统中数据的流动、数据的输入和输出以及数据的存储。它通过图形符号来表示系统中的数据流、处理过程、数据存储和数据源/终点,是理解系统如何处理数据的有效方式。
企业级的大数据平台,Hadoop至今仍然占据重要的地位,而基于Hadoop去进行数据平台的架构设计,是非常关键且重要的一步,在实际工作当中,往往需要有经验的开发工程师或者架构师去完成。今天的大数据开发分享,我们就来讲讲,基于Hadoop的数仓设计。
大家好,今天我想和大家分享一个云计算领域的重要话题——腾讯云产品EdgeOne。随着全球数字化转型的加速,云计算已成为企业与个人的必备工具,而腾讯云作为全球领先的云计算服务提供商,其核心产品EdgeOne拥有独特的功能和优势。在这篇文章中,我们将深入探讨EdgeOne的各项功能、优势以及如何更好地应用它来解决实际问题。
大大的世界,小小的人儿;喜欢夜的黑,更爱昼的白。因为热爱安全,所以想起该做些什么了?!公众号主要将不定期分享个人所见所闻所感,包括但不限于:安全测试、漏洞赏析、渗透技巧、企业安全...... 1 Android数据存储方式 本文简单介绍Android APP的五种数据存储方式(其中本地存储方式四种、网络存储方式一种,分别为:文件存储数据、SQLite数据库存储数据、使用ContentProvider存储数据、使用SharedPreferences存储数据、网络存储数据)与相关风险点,从安全的角度出发,对本地
本文档为数据存储与操作思维导图与知识点整理。共分为6个部分,由于页面显示原因,部分层级未能全部展开。结构如下图所示。
小编在地图项目,产品应用有各种数据,如:离线地图数据、离线语音数据、模板包、地图样式文件、收藏及历史数据等等。项目遇到应用数据相关的测试任务,小编对Android数据存储进一步学习和总结,2020我们一起努力吧!
大数据面对挑战是你必须重新思考构建数据分析应用的方式。传统方式的应用构建是基于数据存储在不支持大数据处理的基础之上。这主要是因为一下原因:
Lakehouse最早由Databricks公司提出,其可作为低成本、直接访问云存储并提供传统DBMS管系统性能和ACID事务、版本、审计、索引、缓存、查询优化的数据管理系统,Lakehouse结合数据湖和数据仓库的优点:包括数据湖的低成本存储和开放数据格式访问,数据仓库强大的管理和优化能力。Delta Lake,Apache Hudi和Apache Iceberg是三种构建Lakehouse的技术。
在大规模网络爬虫系统中,合理的架构设计和高效的部署方式是确保系统稳定性和可扩展性的关键。本文将介绍如何利用云计算和Docker技术进行大规模网络爬虫系统的架构设计和部署,帮助你构建高效、可靠的爬虫系统。
在当今信息时代,网络数据的采集和分析对于企业和个人都具有重要意义。本文将介绍基于Python的网络数据采集系统的设计与实现,帮助你构建高效、灵活的数据采集系统,实现对目标网站的自动化数据抓取和处理。
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。您可通过新手入门全面的了解COS,学习产品的基础知识,掌握控制台、API、SDK、工具等操作,助力高效便捷地管理您的业务。
Protocol Buffers,简称protobuf,是一个强大的序列化工具,它不仅仅是用于数据存储或RPC数据交换的格式。以下是关于protobuf的一些基本信息。
秉持数据驱动战略的数据驱动型组织,正在利用数据,以前所未有的速度开创未来。同时,也面临日益增长的安全、隐私、合规风险。
Matano是一款针对AWS的开源安全湖平台,该平台允许我们从各种数据源获取并注入大量和安全以及日志相关的数据,并将其存储到一个开源的Apache Iceberg数据湖中,同时这也方便广大研究人员进行后续的安全数据查询。除此之外,该工具还会创建Python脚本对代码进行实时监测,并会在检测到问题是发出实时警报。Matano是以完全无服务架构形式实现的,并且专为AWS设计。该工具的特性为大规模、低成本和零操作,支持广大研究人员轻松将Matano部署到目标AWS账户中。
大家好,我是独孤风,一位曾经的港口煤炭工人,目前在某国企任大数据负责人,公众号大数据流动主理人。在最近的两年的时间里,因为公司的需求,还有大数据的发展趋势所在,我开始学习数据治理的相关知识。今天给大家分享一体化的元数据管理平台——OpenMetadata。
以前的系统上有boot.ini配置,现在没有了只能bcdedit修改系统配置,或者msconfig修改(可修改项有限)
指标、日志和链路跟踪是端到端可观察性的核心支柱。尽管对于获得云原生架构的完整可见性至关重要,但端到端的可观察性对于许多 DevOps 和 SRE 团队来说仍然遥不可及。这是由于多种原因造成的,所有这些原因都以工具为共同点。由于超大规模云提供商和容器化微服务的使用不断增加,日志管理市场必须解决这一工具难题,才能实现其预计的从2020 年的 19 亿美元到 2026 年的 41 亿美元的扩张。
随着物联网设备的激增,企业需要一种解决方案来收集、存储和分析其设备的数据。Amazon Web Services提供了一些有用的工具,可为IoT设备设计强大的数据管道。
在规划图系统时,需要综合考虑问题需求、数据存储和处理效率、系统可扩展性以及算法选择等因素,以达到性能高、资源消耗低和可扩展性强的目标。
由于MongoDB中的Bson对象大小是有限制的,在1.7版本以前单个Bson对象最大容量为4M,1.7版本以后单个Bson对象最大容量为16M[5]。对于一般的文件存储,单个对象的4到16M的存储容量能够满足需求,但无法满足对于一些大文件的存储,如高清图片、设计图纸、视频等,因此在海量数据存储方面,MongoDB提供了内置的Grid
上周我们开始开发一款简易版的的底图开发工具BaseMap,就临时数据存储我们做了做了一些优化。
数据摄取是连接操作和分析世界的基本过程。对于将数据从原始操作环境中的多个来源传输到分析领域至关重要。
在iPhone上构建自定义数据采集工具可以帮助我们更好地满足特定需求,提高数据采集的灵活性和准确性。本文将为您提供一份完整的指南和示例代码,教您如何在iPhone上构建自定义数据采集工具。
Hadoop数据存储计算平台,运用Apache Hadoop关键技术对其进行产品研发,Hadoop是一个开发设计和运作解决规模性数据的软件系统,是Apache的一个用java代码语言构建开源软件框架结构,构建在大批量计算机组成的服务器集群中对结构化/非结构化数据对其进行分布式计算。hadoop框架结构中最关键设计构思就是:HDFS (海量信息的数据存储)、MapReduce(数据的计算方法)。
Protocol buffers 在序列化数据方面,它是灵活的,高效的。相比于 XML 来说,Protocol buffers 更加小巧,更加快速,更加简单。一旦定义了要处理的数据的数据结构之后,就可以利用 Protocol buffers 的代码生成工具生成相关的代码。只需使用 Protobuf 对数据结构进行一次描述,即可利用各种不同语言或从各种不同数据流中对你的结构化数据轻松读写。 Protocol buffers 很适合做数据存储或 RPC 数据交换格式。可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式
软件定义存储(SDS)是一个软件层,在物理存储设备和数据请求之间提供个抽象层,实现存储虚拟化功能,将底层存储设备和服务器汇集到虚拟存储空间中。这些虚拟空间通过各种冗余方式,提供恢复能力和容错能力。软件定义存储解决方案可以按照业务或基础设施的发展速度进行扩展,使用通用硬件,基于分布式环境构建存储。
Calico 组件 下图显示了 Kubernetes 的必需和可选 Calico 组件,具有网络和网络策略的本地部署。 Calico 组件 Calico API server Felix BIRD confd Dikastes CNI plugin Datastore plugin IPAM plugin kube-controllers Typha calicoctl 云编排器的插件 Plugins for cloud orchestrators Calico API 服务器 主要任务:让您直接使
更多内容请见原文,原文转载自: https://blog.csdn.net/weixin_44519496/article/details/120615596
领取专属 10元无门槛券
手把手带您无忧上云