首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    史上最全《知识图谱》2020综述论文,18位作者, 130页pdf

    在本文中,我们对知识图谱进行了全面的介绍,在需要开发多样化、动态、大规模数据收集的场景中,知识图谱最近引起了工业界和学术界的极大关注。在大致介绍之后,我们对用于知识图谱的各种基于图的数据模型和查询语言进行了归纳和对比。我们将讨论schema, identity, 和 context 在知识图谱中的作用。我们解释如何使用演绎和归纳技术的组合来表示和提取知识。我们总结了知识图谱的创建、丰富、质量评估、细化和发布的方法。我们将概述著名的开放知识图谱和企业知识图谱及其应用,以及它们如何使用上述技术。最后,我们总结了未来高层次的知识图谱研究方向。

    03

    知识图谱研讨实录02丨肖仰华教授带你理清知识图谱基础知识

    知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第二章课程《知识图谱基础知识》的15条精华研讨,来进一步学习了解知识图谱技术内幕。 本课程配套教材《知识图谱:概念

    02

    知识图谱研讨实录08丨肖仰华教授带你读懂知识图谱的质量控制

    知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第八章课程《知识图谱的质量控制》的15条精华研讨,来进一步学习了解知识图谱技术内幕。文末可查看更多章节精华回顾。

    01

    大规模开放数字商业知识图谱评测基准来了:OpenBG上线天池

    近年来,知识图谱受到学术界和产业界的广泛关注,在教育、生物医学、金融等领域得到了广泛的应用,凸显了结构化知识在智能应用中的重要作用。2020 年图灵奖得主 LeCun、Bengio 和 Hinton 在 2015 年《Nature》论文[1]曾指出:融合表示学习与复杂知识推理是人工智能进步的阶梯。在数字商业领域,知识图谱业务的蓬勃发展在许多应用显示出了巨大的潜力,但它仍面临着诸多挑战。例如,现有的商业知识图谱往往存在大量的缺失属性、实体节点和大量相同的未对齐的实体节点,且知识图谱通常由多种模态构成,因而如何对大规模数字知识图谱进行链接预测和实体对齐(同款商品挖掘)面临严峻挑战;此外,现有的知识图谱通常缺乏对知识显著性的建模,如当用户在电商平台搜索 “跑步”关键词 时,“瓶装水”一般不是用户真实的购物意图,用户关注的商品一般是 “跑步鞋、跑步机” 等健身用品。显著的常识可以帮助搜索引擎有更好的理解能力,从而返回更贴合用户需要的商品,因此如何基于数字商业知识图谱进行商品显著性推理也面临巨大挑战。

    02
    领券